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Priority Research Areas

Enterprises and Innovation
• Comprehensive Enterprise/

SoS Modeling and Analysis
• Mission Engineering
• Digital Enterprise 

Transformation

Models and Data
• Systemic Security
• Common Architectures

Human Capital Development
• Evolving Body of Knowledge
• Digital Literacy/ Experience
• SE and Technical Leadership
• Cyber Resilience

Digital Transformation
• Velocity and Agility
• Digital Engineering
• SE Methods for AI and 

Autonomous Systems 

Enterprises and Innovation
• Innovation Culture
• Intellectual Property
• Digital Enterprise 

Transformation
• Portfolio-based Acquisition

Models and Data
• Data Infrastructure
• Analytic Platform

Human Capital Development
• Digital Competencies
• Leadership & Innovation 

Culture
• Cognitive Assistants

Digital Transformation
• Data Management & Sharing
• End-to-end Lifecycles
• Policy Analytics
• Agile Program Management



Three questions I keep hearing …

• How do you know what is the appropriate modeling fidelity for SoS-level analysis?
• Multi-fidelity modeling in classic engineering systems provides some clues…but “its all physics”; in SoS, its “physics and beyond”
• How do you discover the right questions to ask in order to determine scope, model (or data) appropriateness
• Need benchmarks and use cases- have people exchange only models that are expressive enough for others to use them effectively

• What kind and how much data do you need to answer a particular question, e.g. acquisition decision in a ME context?
• This question is perhaps recast best as an uncertainty quantification (UQ) question
• Managerial independence – Service-level decision may satisfy local program objective but exacerbate gap in the joint portfolio
• Approaches:? “Keep your Options Open”- Set-based design; Robust Decision-making – robust to modeled uncertainty, or missing data, for 

given risk tolerance

• How to model, simulate, predict, explain, learn in a future multi-domain, complex (commercial or military) scenarios?
• Designing future Missions is a tough SoS problem- operational and managerial independence of the components…fast-paced multi-domain 

battle with unknown techs à Perhaps AI/ML and Missions as Games
• Focus on optimizing incentives and levers - gaming, mechanism design
• Focus on Flexibility and Adaptability- How many solutions can be obtained in relatively few changes/enhancements- Hamming distance and 

the flexibility /cost ratio; Far beyond today’s “War Gaming”
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CISA pursues the Science of System Integration
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Complex Systems (of Systems) exhibit integration at multiple levels of hierarchy and must be studied as 
such, marrying structural and functional representations of the system, addressing cross-domain 

interactions and seeking appropriate allocations of complexity & autonomy.
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From Definition to Abstraction:
Recognizing Complexity in Hierarchy and “Beyond Multi-Physics” in Representation

Resources Operations Policy Economics
Laws of 
Physics

Human & 
Machine 
Activities, 
Processes

Rules, 
Constraints 

& 
Regulations

Human/Org
Behaviors & 
Incentives

Complex engineered systems (CES) and humans

Network of Collaborating CESs and human organizations

Network of Networks

etc

AAE 560: DAI: A + I + Examples

Delta

Gamma

Beta

alpha

The gist is socio-technical thinking…and modeling…but in a SoSE specific manner.
Aspects of complexity and its role in judicious choices in representation of a system, 

network, or behavior matter quite a bit.
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Mission Design and Success Prediction via
Real-time Strategy (RTS) Games + AI/ML
• Mission / SoS design problem

• complex design spaces 
• dynamically evolving mission environments

• Simulation environments 
• AFSIM
• Command
• Flashpoint Campaigns

• RTS games abstract mission execution as a game played 
between agents.
• The L2G framework enables efficient mission design by 

building a surrogate model of the mission environment 
to assist with design tasks.
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Learning to GameBreak (L2G)
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Regression 
Model
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Application to StarCraft II
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Player (AI bots) Tournament (DOE+Data) Game-breaking (Model+XAI)

AI Bots
- OneBase BattleCruiser
- Mass Reaper
- Proxy Rax
- Ramp Wall
- Cyclone Push
- ANIBot

Feature Units Defaul
t

Min Max

SCV Weapon 
Damage

Health/Hit 5 3 7

BC ATS Damage Health/Hit 8 5 11

BC ATA Damage Health/Hit 5 3 7

SCV Health Health 45 30 60

BC Health Health 550 366 734

SCV Speed Units/Frame 2.8125 1.8750 3.750
0

BC Speed Units/Frame 1.8750 1.2500 2.500
0

SCV Build Time Seconds 17 11 23

BC Build Time Seconds 90 60 120

Data Collection
- 1,000 game designs, each played 10 times
- self-play games

Model Building and Explaining
- Gaussian Process 
- Convolutional Neural Networks
- Uncertainty quantification (MCDN)
- SHAP Explanations
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L2G Application over the Engagement Timeline 
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Pre-Mission During Mission Post-Mission

Neural Network Model to predict current 
state of balance in engagement. 
Enables/provides:
• Dynamic planning and strategizing
• Critical review of current strategy
• Real-time indication of significant events

Explainable AI for feature importance 
identification.
Enables/provides:
• Asset importance
• Critical and sensitive features in 

engagement

Gaussian Process 
Regression/NN+MCDN to predict 
balance points and alter initial balance.
Enables/provides:
• Acquisition
• A priori analysis of engagement
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Pre-Engagement

• Approach: Gaussian Process 
Regression/NN+MCDN
• Input: Scenario Details

ØEnemy Strategy
ØAvailable Assets
ØPossible Asset Changes

• Goal: Determine assets to 
use in an engagement
ØWhat assets contribute to 

the imbalance?
ØHow can we cost-effectively modify 

these assets to achieve optimal 
imbalance?
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Engagement Analysis
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Health

Movement Speed

Attack Speed

Build Speed

Attack Damage (Widow)
Key Features:
• Supply
• Damage Rate
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Insight: Initial Imbalance
§ microRTS had an inherent imbalance due to process assumptions and handling of path 

planning functions.
ØPath planning algorithm unexpectedly impacted game balance

§ Lesson: Beware of initial imbalance!
• Unsafe to assume that any game is balanced
• Methodology should be able to account for it.
• Initial Imbalance was not detected in SCII (robust game engine)
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Prospects for L2G’s broader application
• Acquisition:

ØKey Problem: Difficult to determine what resources/units to 
acquire in a MOSAIC context.

ØL2G Relevance: Unbiasing the Analysis of Alternatives and usage 
of SHAP (XAI) to identify the important levers.

• Simulation/Characterization:
ØKey Problem: Difficult to know the hidden assumptions and bias 

(unknown) in complex Modeling & Simulation/ Wargaming tools. 
Calls into question the believability of high consequence 
outcomes.

ØL2G Relevance: Detect biases and find the root cause through 
explainability. Leverage game balance methods to validate 
simulation. Generalizable Framework applicable to wide variety 
of problems.

Acquisition

Planning

Execution

Simulation
Characterization

Gamebreaker Application 
Domains
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OPERATIONS LIMITS FOR 
PASSENGER-CARRYING URBAN 

AIR MOBILITY MISSIONS
Research sponsored by NASA via National Institute for Aerospace

Presenter: Prof. Daniel DeLaurentis

(Team: Sai Mudumba, Hsun Chao, Apoorv Maheshwari, Brandon 
Sells, Nick Gunady, Prof. William Crossley) 
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Study Motivation and Overview
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Motivation System of System Modeling Approach*

§ Convergence of new technologies and new business 

models leading to emergence of new aviation markets, 

e.g., passenger-carrying Urban Air Mobility (UAM)

§ Important to assess the evolution of technology, 

infrastructure, societal acceptance, airspace integration, 

and many other factors to take us from the current state-

of-the-art to the envisioned large-scale operations

§ For near-term applications of passenger-carrying UAM, 

identify “bottlenecks” limiting the scalability of early 

UAM operations (“Op Limits”)

§ Create computer model, driven by appropriate data & 

scenarios, to analyze significance of key Op Limits *Initial Metro Studies: Chicago and Dallas; Current work examines 5 more 
ROPE table citation: Maheshwari, A., Mudumba, S., Sells, B., Chao, H., DeLaurentis, D., 
Crossley, W. (2020). Urban Air Mobility ROPE Table: A Decomposition Tool to Identify and 
Organize Potential Operational Limits. Purdue University Research Repository. 
doi:10.4231/81N6-EV29 https://purr.purdue.edu/publications/3465/1

Background Map data © 2020 Google
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Unit of Analyses- the Urban Trip
Transportation network model composes of electric vertical takeoff and landing (eVTOL) 

and automobile modes
§ Green edges are trips made by 

eVTOL vehicles

§ Brown edges are trips made by 

automobiles

§ UAM trips consist of both 

automobile and eVTOL modes (e.g., 

branch: AJKB)

§ Automobile trips are conventional, 

ground-based trips (e.g., branch: 

AB) 
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Automobile mode

eVTOL mode

Note: UAM-Ports include only existing, publicly-owned 

infrastructures (i.e., major, regional airports, and 

heliports) in a metropolitan areaddelaure@purdue.edu



Computational Framework Analyzes Op Limits
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Generated Trips in a 
Day for the 

Metropolitan Region

Origin Destination Arrival Time Pax VOT
(lat1o, lon1o) (lat1d, lon1d) 01:15am $20/hr
(lat2o, lon2o) (lat2d, lon1d) 01:20am $30/hr
(lat3o, lon3o) (lat3d, lon3d) 01:23am $23/hr
(lat4o, lon4o) (lat4d, lon4d) 05:15am $37/hr
… … … …

Purpose
To Work

From Work
To Airport

Other
…

Trips with least 
effective cost for 

eVTOL

Computational 
Framework

UAM-Port Analyses

Weather Analyses

Emission Analyses

Metro-analysis

CMAP/NCTCOG 
Gravity Model 

Data

Trip end times 
for a given 

purpose

Household 
income 

distribution

Input Data

Outputs of Interest
• Ops Limits Assessment
• Example Trips
• …

Chicago Metropolitan Agency for Planning (CMAP)
North Central Texas Council of Governments (NCTCOG)
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# UAM Preferred Trips For Different Network Sizes (Launch)

Chicago Commute Trips: 6,221,968

Dallas Commute Trips:    5,306,336
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Small (3 Vertiports) Medium (10 Vertiports) Large (All existing infra)

Chicago 397 3504 6305

Dallas 853 2330 6928

Chicago Small Chicago Medium Chicago Large

Dallas Small

Dallas Medium

Dallas Large

Note: Launch Scenario UAM Operation Cost 
$605/hr + 1pax

Background map data for all figures © OpenStreetMap contributors 
Data available under the Open Database License (https://www.openstreetmap.org/copyright)
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Key Observations from # UAM Preferred Trips
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• #Trips increase with the number of 
vertiports; seems to follow a non-linear 
relationship

• Vertiport siting plays a significant role
• Most trips concentrated around the 

vertiport locations 

• A few vertiports had quite high 
concentration of trips, even with high-
cost launch scenario

• Implications for congestion 
management

Chicago Medium Chicago Large

Background map data for all figures © OpenStreetMap contributors 
Data available under the Open Database License (https://www.openstreetmap.org/copyright)ddelaure@purdue.edu
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Impact of Ridesharing (DALLAS)
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• Assuming the direct impact to the 
operating cost due to ride-sharing, 
#UAM-preferred trips are calculated

• For example, operating cost for
1 pax ® $605/hr
2 pax ® $303/hr (=605/2)

• Surprisingly, increasing the #pax per 
flight to 2 produces a larger impact as 
compared to operating at all available 
infrastructure locations with ridesharing 
not enabled!

*log scale*

Enabling ride sharing will be key to lowering 
UAM operating cost to make it a real market
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Weather Condition Ranking - Results
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2%
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Wind 15-20 knots is the most frequently 
occurring weather condition in both cities

• Implies technology solution should be 
integrated onboard the vehicle

Low temperatures in Winter is important 
for Chicago

• Higher number of trips impacted in 
winter; 0 impacted in summer

• Modular technology solution might be 
suitable for this weather condition

IS: 3 IS: 5

IS: 5IS: 1

IS: 1 IS: 1 IS: 7 IS: 7 IS: 5 IS: 6

IS: 1 IS: 6 IS: 4 IS: 7 IS: 7 IS: 7
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Estimates of CO2 Emissions in Dallas and Chicago
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§ Electricity grid makeup drives emissions from UAM operations with eVTOL + Gasoline Cars without autonomy

Chicago Small Chicago Medium Chicago Large Dallas Small Dallas Medium Dallas Large

Background map data for all figures © OpenStreetMap contributors 
Data available under the Open Database License 
(https://www.openstreetmap.org/copyright)
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Overview of Current Study Effort (Commenced Oct. 2021)

Further exploration of operations limits for Advanced Air Mobility (AAM) missions

• Identify further factors that may limit the number of AAM (e.g., Emergency 

medical, sUAS package delivery, etc.) operations and potential 

interdependencies with already identified UAM limits

• Perform case studies on additional Metro areas considering existing and 

potential future operational limits

• Compare and contrast results across the various Metro areas/case studies

• Recommend technology research most promising for paths to achieving scaled 

AAM operations

23

ddelaure@purdue.edu



Model-based System 
Engineering Approach for 

Realizing UAM Operations in 
UML-5
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Motivation

v Manage UAM traffic in a dynamic airspace 
environment

v Operate securely and safely in high-density 
operation environment

v UML-5 System of Systems architecture
v Define UAM mission requirements for 

ensuring
safe, secured, and robust UAM operations

v Build an abstract model to analyze and 
quantify UAM System performances with 
various technologies and concept of 
operations

NASA-FAA Urban Air Mobility Maturity Level (UML)[1]

UML-1 Late-Stage Certification Testing and Operational Demonstrations in 
Limited Environments

UML-2 Low Density and Complexity Commercial Operations with Assistive 
Automation

UML-3 Low Density, Medium Complexity Operations with Comprehensive 
Safety Assurance Automation

UML-4 Medium Density and Complexity Operations with Collaborative and 
Responsible Automated Systems

UML-5 High Density and Complexity Operations with 
Highly-Integrated Automated Networks

UML-6 Ubiquitous UAM Operations with System-Wide Automated 
Optimization

25
[1] Hill, B. P., DeCarme, D., Metcalfe, M., Griffin, C., Wiggins, S., Metts, C., Bastedo, B., Patterson, M. D., and 
Mendonca, N. L., “UAM Vision Concept of Operations (ConOps) UAM Maturity Level (UML) 4,” 2020. [Online]

Secure and Safe Assured Autonomy (S2A2)
NASA University Leadership Initiative
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Research Methodology – Systems Engineering Models 

• Systems Engineering models 
provide consistent context and 
input for more detailed design 
and verification activities in 
other domains, which can also 
be model-based

• In all disciplines, including 
Systems Engineering, there exist 
both descriptive and analytical 
models

26
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UML-5 System of Systems Architecture
System of Systems Components
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UAM Communications Networks 
Photo credit: NASA[1]

Model Scopev Onboard Controller System (OC) [aircraft]

• Aircraft flight control, sensing, communication 
and navigation systems

v Fleet Operator (FO)

• Responsible for UAM operation executions 
and regulatory compliance

• Shares flight telemetry for safety and 
situational awareness, and strategic 
deconfliction

v Provider of Services for UAM (PSU)

• Supports fleet operators to meet UAM 
operational requirements 

• Maintains the airspace’s safety and efficiency
• Responsible for distributing relevant data and 

analyzing and verifying flight intent
• Communication with other PSU via the PSU 

network
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UML-5 Operational Model

Onboard Controller (OC)

1. OC remains standby
2. OC receives Op Intent from FO
3. Once Op Intent is accepted,

Nominal operation is initiated
4. OC sensing and navigational systems

provide state vectors update to FO
5. Once aircraft landed nominally, OC notifies 

FO for mission completion
6. FO acknowledges mission completion
7. End of flight

28

OC State Machine Diagram
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UML-5 Operational Model

Fleet Operator (FO)
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1. FO standby for trip evaluation
2. FO receives Trip Intent
3. FO processes Trip Intent into Op Intent
4. FO sends Op Intent to PSU
5. PSU approves Op Intent
6. FO sends approved Op Intent to OC
7. FO monitors OC flight status and 

keep PSU updated
8. FO receives mission completion 

signal from OC
9. FO acknowledges OC completion

FO Behavior Diagram
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UML-5 Operational Model – Simulation 
Demonstration

30

ddelaure@purdue.edu



UML-5 Operational Model – Interface Identification

Demo of Integrated TC Algorithm
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Onboard Controller In-Flight Nominal Operation

Onboard Controller

§ TC2-1 Mathematical Modeling of UAM 
and Cyberattack

§ TC2-2 Cyberattack Analysis, Detection, 
and Risk Mitigation

§ TC2-3 AI-driven Cyberattack Monitoring
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What are your hard(er) SoSE problems…or better 
solutions??

1. ?

2. ?

3. ?
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