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Three guestions | keep hearing ...

* How do you know what is the appropriate modeling fidelity for SoS-level analysis?
* Multi-fidelity modeling in classic engineering systems provides some clues...but “its all physics”; in SoS, its “physics and beyond”
* How do you discover the right questions to ask in order to determine scope, model (or data) appropriateness

* Need benchmarks and use cases- have people exchange only models that are expressive enough for others to use them effectively

* What kind and how much data do you need to answer a particular question, e.g. acquisition decision in a ME context?
* This question is perhaps recast best as an uncertainty quantification (UQ) question
* Managerial independence — Service-level decision may satisfy local program objective but exacerbate gap in the joint portfolio
* Approaches:? “Keep your Options Open”- Set-based design; Robust Decision-making — robust to modeled uncertainty, or missing data, for
given risk tolerance
* How to model, simulate, predict, explain, learn in a future multi-domain, complex (commercial or military) scenarios?

* Designing future Missions is a tough SoS problem- operational and managerial independence of the components...fast-paced multi-domain
battle with unknown techs = Perhaps Al/ML and Missions as Games

* Focus on optimizing incentives and levers - gaming, mechanism design

* Focus on Flexibility and Adaptability- How many solutions can be obtained in relatively few changes/enhancements- Hamming distance and
the flexibility /cost ratio; Far beyond today’s “War Gaming”

ddelaure@purdue.edu



CISA pursues the Science of System Integration

Complex Systems (of Systems) exhibit integration at multiple levels of hierarchy and must be studied as
such, marrying structural and functional representations of the system, addressing cross-domain
interactions and seeking appropriate allocations of complexity & autonomy.
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From Definition to Abstraction:
Recognizing Complexity in Hierarchy and “Beyond Multi-Physics” in Representation

Resources Operations Policy Economics

A
v

Delta etc

Gamma <« Network of Networks >

Beta «— Network of Collaborating CESs and human organizations —*

alpha « Complex engineered systems (CES) and humans ——

The gist is socio-technical thinking...and modeling...but in a SoSE specific manner.
Aspects of complexity and its role in judicious choices in representation of a system,
network, or behavior matter quite a bit.
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Mission Design and Success Prediction via . __ .
Real-time Strategy (RTS) Games + Al/ML

* Mission / SoS design problem
* complex design spaces
* dynamically evolving mission environments

e Simulation environments ummlmvuo"ﬂ =
* AFSIM — ] 1| e
« Command ;
* Flashpoint Campaigns

* RTS games abstract mission execution as a game played
between agents.

* The L2G framework enables efficient mission design by
building a surrogate model of the mission environment
to assist with design tasks.

MISSION EDITOR 2.0 ﬂf
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Learning to GameBreak (L2G
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Application to StarCraft |l

Al Bots

OneBase BattleCruiser
Mass Reaper

Proxy Rax

Ramp Wall

Cyclone Push

ANIBot

Player (Al bots)
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Data Collection

- 1,000 game designs, each played 10 times
- self-play games
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L2G Application over the Engagement Timeline

Gaussian Process
Regression/NN+MCDN to predict
balance points and alter initial balance.
Enables/provides:

* Acquisition

e A priori analysis of engagement
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Neural Network Model to predict current
state of balance in engagement.
Enables/provides:
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n=500 MCDN runs, Bounds contain 95% of data
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Enables/provides:

* Asset importance

e Critical and sensitive features in
engagement
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Pre-Engagement

SCV_DAMAGE

ATS_DAMAGE

* Approach: Gaussian Process
Regression/NN+MCDN

* Input: Scenario Details

» Enemy Strategy
» Available Assets

» Possible Asset Changes

ATA_DAMAGE
SCV_HEALTH
BC_HEALTH
SCV_SPEED
BC_SPEED
SCV_BUILD_TIME
BC_BUILD_TIME

P(Win) = 51.94%,
Confidence Interval (+/- 20): [46.25%, 57.58%]

0 20 40 60 80 100
P(Player 1 Wins) (As Percent)

BC ATA DAMAGE
BC HEALTH

BC ATS DAMAGE
BC BUILD TIME
SCV SPEED

SCV BUILD TIME
SCV DAMAGE
SCV HEALTH

BC SPEED

e Goal: Determine assets to
use in an engagement

» What assets contribute to
the imbalance?

» How can we cost-effectively modify
these assets to achieve optimal
imbalance?

-2 -1 0 1 2 3 4
Gradient Estimates
(Change in Percentange Points per Feature Increment)
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Engagement Analysis

SHAP over all training games

SHAP over all training games
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Insight: Initial Imbalance

*= microRTS had an inherent imbalance due to process assumptions and handling of path
planning functions.
» Path planning algorithm unexpectedly impacted game balance
= Lesson: Beware of initial imbalance!
* Unsafe to assume that any game is balanced

* Methodology should be able to account for it.
* Initial Imbalance was not detected in SCII (robust game engine) Game: 30

PortfolioAl_0 vs PortfolioAl_1
Real Winner: PortfolioAl 0

f\’VJU’ w“v'f o linn (J\{.ﬂ vy i "'“'fr',;
e

V = PortfolioAl_0 wins

10

MY Y :

V

STARTING IMBALANCE

Tie 08 4
7%

06 4

l — PortfolicAl_1 wins

Player 1
Wins
33%

Player O
Wins
60%

1000
Game Time
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Prospects for L2G’s broader application

* Acquisition:
» Key Problem: Difficult to determine what resources/units to
acquire in a MOSAIC context.

»L2G Relevance: Unbiasing the Analysis of Alternatives and usage
of SHAP (XAl) to identify the important levers.

e Simulation/Characterization:
» Key Problem: Difficult to know the hidden assumptions and bias

(unknown) in complex Modeling & Simulation/ Wargaming tools.

Calls into question the believability of high consequence
outcomes.

»L2G Relevance: Detect biases and find the root cause through
explainability. Leverage game balance methods to validate
simulation. Generalizable Framework applicable to wide variety
of problems.

ddelaure@purdue.edu

Gamebreaker Application
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OPERATIONS LIMITS FOR
PASSENGER-CARRYING URBAN
AIR MOBILITY MISSIONS

Research sponsored by NASA via National Institute for Aerospace
Presenter: Prof. Daniel Delaurentis

(Team: Sai Mudumba, Hsun Chao, Apoorv Maheshwari, Brandon
Sells, Nick Gunady, Prof. William Crossley)



Study Motivation and Overview

= Convergence of new technologies and new business

54
o~ O D
models leading to emergence of new aviation markets, T Aircraft D RS SRR
/ 2ort — | ek L :
\ oIt \ ] ‘:\,y'_' v
e.g., passenger-carrying Urban Air Mobility (UAM) Geneva \ \. & BES Ook Park iR
. \ s N =" /
= |mportant to assess the evolution of technology, Gatai &.l’_ [ B
bﬁ % 2 —__DaleBri = p -
infrastructure, societal acceptance, airspace integration, B = @
A\ ’ g‘d

and many other factors to take us from the current state- | | -[El; i K=o i
of-the-art to the envisioned large-scale operations |

= For near-term applications of passenger-carrying UAM,
identify “bottlenecks” limiting the scalability of early
UAM operations (“Op Limits”)

11

= Create computer model, driven by appropriate data &

Background Map data © 2020 Google

scenarios, to analyze significance of key Op Limits

E PURDUE  schoototaeronauics

UNIVERSITY, | @ndAstronautics o/19/22 | 15
ddelaure@purdue.edu https://purr.purdue.edu/publications/3465/1



https://purr.purdue.edu/publications/3465/1

Unit of Analyses- the Urban Trip

= Green edges are trips made by
eVTOL vehicles

= Brown edges are trips made by
automobiles

= UAM trips consist of both

automobile and eVTOL modes (e.g.,
branch: AJKB)

=  Automobile trips are conventional,

ground-based trips (e.g., branch:
AB)

E PURDUE  schoototaeronauics

UNIVERSITY and Astronautics
ddelaure@purdue.edu

......

G: Origin _ o
Major Airport I: Destination

Major Airport

J: Origin
Helipad

K: Destination
Helipad

A: Origin B: Destination

E: Destination
Regional Airport

C: Origin
Regional Airport

-—-----
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Computational Framework Analyzes Op Limits

Metro-analysis

Input Data

Origin Destination Arrival Time  Pax VOT Purpose
(latlo, lonlo) (latid, lonid) 01:15am $20/hr To Work
! (lat20, lon20) (lat2d, lonid) 01:20am $30/hr From Work ' UAM-Port Ana| ses
CMAP_/NCTCOG (lat30, lon30) (lat3d, lon3d) 01:23am $23/hr To Airport | y
Gravity Model (lat4o, lon4o) (lat4d, lon4d) 05:15am S37/hr Other

Data

Trips with least

effective cost for : Weather Analyses
eVTOL

) ) Generated Tripsin a
Trip end times
for a given Day for the
purpose | Metropolitan Region

Computational
Framework

Household
income
distribution

Emission Analyses
Outputs of Interest

* Ops Limits Assessment
* Example Trips

@ P URDUE ‘ School of Aeronautics

UNIVERSITY. | 2ndAstronautics o/19/22 | 17
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# UAM Preferred Trips For Different Network Sizes (Launch)

Small (3 Vertiports) Medium (10 Vertiports) Large (All existing infra)
Chicago 397 3504 6305
Dallas 853 2330 6928 ;

Data available under the Open Database License (https://www.openstreetmap.org/copyright)

E PURDUE  schoototaeronauics

UNIVERSITY and Astronautics
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Key Observations from # UAM Preferred Trips

8000

m Chicago Dallas

., 7000

* H#Trips increase with the number of £ 6000
|_

vertiports; seems to follow a non-linear © 5000
. . Q

relationship v 4000

‘2‘.- 3000

* Vertiport siting plays a significant role < 2000

. * 1000

* Most trips concentrated around the . —
vertiport locations B Small Medium Large

e Afew vertiports had quite high
concentration of trips, even with high-
cost launch scenario

* Implications for congestion
management

E PURDUE  schoototaeronauics

UNIVERSITY and Astronautics

ddelaure@purdue.edu . . .
@p Data available under the Open Database License (https://www.openstreetmap.org/copyright)
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#UAM-Preferred Trips for Launch Cost by Network size and #Pax per flight

Impact of Ridesharing (DALLAS) e

BN 3 Pax
4 Pax

*log scale*

* Assuming the direct impact to the
operating cost due to ride-sharing,
#UAM-preferred trips are calculated

105 ]

* For example, operating cost for
1 pax — $605/hr
2 pax — $303/hr (=605/2)

* Surprisingly, increasing the #pax per
flight to 2 produces a larger impact as
compared to operating at all available
infrastructure locations with ridesharing /
not enabled! '

104 .

#UAM-Preferred Trips

Enabling ride sharing will be key to lowering
UAM operating cost to make it a real market

? PURDUE | schoolof aeronautics 103 -

UNIVERSITY and Astronautics
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Small Medium Large



Weather Condition Ranking - Results

Wind 15-20 knots is the most frequently Fraction of Impacted Trips in Chicago
. ape . ope 40% m Spring
occurring weather condition in both cities __, _ <
(0 ummer
Implies technology solution should be 30% C;:ter
integrated onboard the vehicle 257%
20%
15%
Low temperatures in Winter is important %"
for Chi o
0 C Icago 0% || I I . . [ | [ |
ngher number Of tnps Impacted in Low TemperaturefWind 15-20 Knots] MVFR Ceiling Rain IFR Visibility LIFR Ceiling Snow Mist
winter; 0 impacted in summer . Fraction of Impacted Trips in Dallas
° m Spring
Modular technology solution might be "% Summer
suitable for this weather condition " Fall
10% Winter

8%
6%
4%

27 PURDUE | s, I 1y 1§ I L |

0%
ddelaure@purdue.edu MVFR Ceiling |Wind 15-20 Knots Rain Mist IFR Ceiling  Wind20-25 Knots  IFR Visibility LIFR Ceiling




Estimates of CO2 Emissions in Dallas and Chicago

= Electricity grid makeup drives emissions from UAM operations with eVTOL + Gasoline Cars without autonomy

500 ' ' ' 100 .
= Il Chicago
= B Dallas
5 400 : . 80
20 Il Chicago =
2 I Dallas =
£ 300 ¢ 5 60T
.O("l 200 L ,*5 40 -
bt =
£ 100 207 I
0 0 |
Small Medium Large Coal/Petroleum Nat.urfil Gas Nuclcar Renewables
Vertiport Network Size Electricity Generation Source

E PURDUE  schoototaeronauics

UNIVERSITY and Astronautics Data available under the Open Database License 9/19/22 | 22
(https://www.openstreetmap.org/copyright)
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Overview of Current Study Effort (Commenced Oct. 2021)

Further exploration of operations limits for Advanced Air Mobility (AAM) missions

* |dentify further factors that may limit the number of AAM (e.g., Emergency
medical, SUAS package delivery, etc.) operations and potential
interdependencies with already identified UAM limits

* Perform case studies on additional Metro areas considering existing and
potential future operational limits

* Compare and contrast results across the various Metro areas/case studies

« Recommend technology research most promising for paths to achieving scaled

AAM operations

E PURDUE  schoototaeronauics

UNIVERSITY and Astronautics 9/19/22 |
ddelaure@purdue.edu



Model-based System
Engineering Approach for
Realizing UAM Operations in
UML-5

Hsun Chao , Edward TY Fung, Sonali Sinha Roy, Prof. DelLaurentis
Center for Integrated Systems in Aerospace, Purdue University

NASA University Leadership Initiative (ULI) S2A2 Grant led by NCA&T
NORTH CAROLINA AGRICULTURAL E

AND TECHNICAL STATE UNIVERSITY PURDUE Georgia
Tech
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** Manage UAM traffic in a dynamic airspace
environment

¢ Operate securely and safely in high-density
operation environment

s UML-5 System of Systems architecture

+»» Define UAM mission requirements for

ensuring _
safe, secured, and robust UAM operations

+¢ Build an abstract model to analyze and
quantify UAM System performances with
various technologies and concept of
operations

UML-5

School of Aeronautics
and Astronautics

27 FURPYE

ddelaure@purdue.edu

cA: System ‘"t“grab.

Planping, & ™

NASA-FAA Urban Air Mobility Maturity Level (UML)

High Density and Complexity Operations with
Highly-Integrated Automated Networks



Research Methodology — Systems Engineering Models

e Systems Engineering models

Model Based Systems Engineering ‘ '

provide consistent context and i eL j;
. . . tracealility Structure Behavior analysis
input for more detailed design atiorple” (=7 = | =, neekis
o po . e oy . External B 2 closed form
and verification activities in RequirementspJ _ | CH D
other domains, which can also | Ll ” :}{ELE—W@
e erforpanc2 .
be model-based <] viewshint [T T|FEERET Pesties] | ciscrete cvent
Docu%entationJ ﬁq:
. . . . . & Specifications N N
* In all disciplines, including = (E"—u
SyStemS Enginee ring’ there eXiSt Requirements Parametrics network
both descriptive System Model (SysML) Analysis Models
I
Model Level
Linkage
PURDUE School of Aeronautics : Ml\l?:cel:aBnailcs::Id . M;(Ij:clt?izaszfd } - M%doi’ltv?:rseed . Mo‘?eltsased ]
UNIVERSITY. 2"dAstronautics [ Design [l Design O o i esting
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UML-5 System of Systems Architecture

¢ Onboard Controller System (OC) [aircraft]

 Aircraft flight control, sensing, communication

FAA Development S Industry Development

and naVigation SyStemS and Deployment :|and Deployment ——
% Fleet Operator (FO) N d:fum Jan coorinasion
- Operations, and coordination t
H H . =| notifications, Operational requests, .7L,

* . eviations emergency information, — = :
Responsible for UAM operation executions - R e @8 @ @D 2 s J
and regulatory compliance § < —~* Providerof ||| T T<l—{8:

. QE) E Constraints, - {Semces to UAM Routing, ();:t'\ll\.’,'hl‘:‘" Fieet | ) / Fleet " Fleet : \ g “;

* Shares flight telemetry for safety and B Q| rees e consains,  \Qpeny ooy \Qpssy 23
situational awareness, and strategic 32 - ! etormonon =
deCOanICtIOn 5 E : — rommum(‘adnon é 5;'

) . and coordination A c
% Provider of Services for UAM (PSU) ES S e 20 25
2 B L roct s formton | l - (8 i s =

* Supports fleet operators to meet UAM - e < —~ j<_ %
Operat|0na| requlrements = E Constraints, SUPP“QFS(USS) Other operators “K"'i UAS ) / uas ) UAs § E’;

requests ntent mnj‘r(r).;:(i ‘,me-nn:t l‘)prml:.v.r ;(‘ perator/ §§

* Maintains the airspace’s safety and efficiency - i A o w[

* Responsible for di_stributi_n% relevant data and Operatons consuaits,
analyzing and verifying flight intent papsalonstass

 Communication with other PSU via the PSU
network

E PURDUE School ofAero_nautics
UNIVERSITY. | ndAstronautics 8/04/2022 | 27
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UML-5 Operational Model

1. OC remains standby
2. OC receives Op Intent from FO

3. Once Op Intent is accepted,
Nominal operation is initiated

4. OC sensing and navigational systems
provide state vectors update to FO

5. Once aircraft landed nominally, OC notifies
FO for mission completion

FO acknowledges mission completion
End of flight

27

ddelaure@purdue.edu

PURDUE

UNIVERSITY

School of Aeronautics
and Astronautics

Pre-flight

Standby
do / Receive Signal

In-flight
Nom inal Operation

do / Nominal Operation by OC

w hen (state =="Post_Flight")

Post-flight

OC State Machine Diagram

w hen (state == "Oplntent_Rejected")

w hen (state == "Nominal_Operation")

w hen (state == "Nav_Equipage_Failure")

w hen (state == "Nominal_Operation")

w hen (state =="Update_Oplintent_En_Route")

w hen (state == "Nominal_Operation")

w hen (state =="Cyberattacked")

w hen (state =="Nominal_Operation")

w hen (state == "System Failure_Warning")

Oplintent_Rejected s O

Non-conform ance

Nav Equipage Failure

Update Oplintent En-route

Cyberattack

Contingency Cases

w hen (state =="Post_Flight")

N\
@K

System Failure Warning

Control Authority Request Approval

Rem ote Piloting

8/04/2022 | 28



UML-5 Operational Model

1.
2.
3.
4.
5.
6.
7.

FO standby for trip evaluation

FO receives Trip Intent

FO processes Trip Intent into Op Intent
FO sends Op Intent to PSU

PSU approves Op Intent

FO sends approved Op Intent to OC

FO monitors OC flight status and
keep PSU updated

8. FO receives mission completion
signal from OC

9. FO acknowledges OC completion

E PURDUE  schoototaeronauics

UNIVERSITY and Astronautics
ddelaure@purdue.edu

FO Behavior Diagram

Trip Intent «from » FO2Pax —

T

sender receiver
J l content

\%

trip_intent
TE: Trip Evaluation

th

J}approved_trip_intenti mission_status

[else] 8
rip_intent I
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UML-5 Operational Model — Simulation
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UML-5 Operational Model — Interface Identification

Onboard Controller In-Flight Nominal Operation

Onboard Controller
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What are your hard(er) SoSE problems...or better
solutions??
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