
Welcome to the
2022 System of Systems Engineering Collaborators 

Information Exchange (SoSECIE)

We will start at 11AM Eastern Time

You can download today’s presentation from the SoSECIE Website:

https://mitre.tahoe.appsembler.com/blog 

To add/remove yourself from the email list or suggest a future topic or

speaker, send an email to sosecie@mitre.org

SoSECIE Webinar
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NDIA System of Systems SE Committee

• Mission
• To provide a forum where government, industry, and academia 

can share lessons learned, promote best practices, address 
issues, and advocate systems engineering for Systems of 
Systems (SoS)

• To identify successful strategies for applying systems 
engineering principles to systems engineering of SoS

• Operating Practices
• Face to face and virtual SoS Committee meetings are held in 

conjunction with NDIA SE Division meetings that occur in 
February, April, June, and August

NDIA SE Division SoS Committee Industry Chairs: 
Mr. Rick Poel, Boeing
Ms. Jennie Horne, Raytheon

OSD Liaison: 
Dr. Judith Dahmann, MITRE
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Simple Rules of Engagement

• I have muted all participant lines for this introduction and the briefing.

• If you need to contact me during the briefing, send me an e-mail at 
sosecie@mitre.org.

• Download the presentation so you can follow along on your own

• We will hold all questions until the end:

• I will start with questions submitted online via the CHAT window 
in Teams.

• I will then take questions via telephone; State your name, 
organization, and question clearly.

• If a question requires more discussion, the speaker(s) contact info is in 
the brief.
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Disclaimer

• MITRE and the NDIA makes no claims, promises or guarantees about the 
accuracy, completeness or adequacy of the contents of this presentation and 
expressly disclaims liability for errors and omissions in its contents.

• No warranty of any kind, implied, expressed or statutory, including but not 
limited to the warranties of non-infringement of third-party rights, title, 
merchantability, fitness for a particular purpose and freedom from computer 
virus, is given with respect to the contents of this presentation or its hyperlinks 
to other Internet resources.

• Reference in any presentation to any specific commercial products, processes, 
or services, or the use of any trade, firm or corporation name is for the 
information and convenience of the participants and subscribers, and does not 
constitute endorsement, recommendation, or favoring of any individual 
company, agency, or organizational entity.
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2022 System of Systems Engineering Collaborators 
Information Exchange Webinars

Sponsored by MITRE and NDIA SE Division

June 14, 2022
Leverage Set-Based Practices to Make Agile Practices More Effective for System-of-

Systems Engineering
Brian Kennedy 

June 28, 2022
Model Based Systems Engineering in a Digital Environment: Creating a Virtual Testbed 

for Complex System Architectures 
Claudeliah Roze

July 12, 2022
TBD

July 26, 2022
TBD
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Mission-Level Optimization:  

A New Method for Designing 

Successful Systems

Brian Chell, Ph.D.

Steven Hoffenson, Ph.D.

Mark R. Blackburn, Ph.D.

National Defense Industrial Association

Virtual Systems & Mission Engineering Conference

December 8th, 2021

Approved for Public Release



• Mission models are becoming more prevalent and capable

• Established multiobjective optimization (MOO) approaches using key 

performance parameters (KPPs) are insufficient

• Missions present many difficulties for MOO methods

• High amounts of uncertainty and complexity

• Binary success/failure objectives

• Subjectivity in objective weighting

• Subjectivity in selecting design from a Pareto set

• This project motivates, proposes, and tests a new method for mission-level 

optimization (MLO)

Introduction

Approved for Public Release 7



System Model

Mission-Level Optimization Context

Mission Model

System ModelSystem ModelSystem Model

Subsystem 
Model

Subsystem 
Model

Subsystem 
Model

Operational Context

Operational Decisions

External System 
Behavior

Strategy

Environmental 
Variables

System 
Usage
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• Mission Engineering

• Systems engineering at a high level of abstraction

• Combines capabilities with desired effects

• Mission modeling methods and tools

• Top-down/Bottom-up

• Combination of models or an analysis suite

• Mission-level tools still immature

• Metrics for mission-level analysis

• Cost and value often used

• New measures necessary

MLO Background

Zimmerman, 2019

Approved for Public Release 9



Related Optimization Techniques

Method Value Limitations

Robust design optimization
(Park, 2006; Beyer, 2007)

Handles uncertain inputs while limiting 
uncertainty in objective

Intended for low levels of uncertainty, e.g., 
dimensional tolerances

Reliability-based design optimization
(Enevoldsen, 1994; Tu, 1999; Madsen, 2006)

Maintains feasible design points if 
constraints are well-defined

Assumes continuous reliability-based 
objectives/constraints

Heuristic optimization
(Tanese, 1989; Kennedy, 1995; Dorigo, 2006; 
Olafsson, 2006)

Does not require gradient information, 
many algorithms well-suited to find 
global optima

Many function evaluations, typically has no 
optimality guarantee, and does not 
explicitly handle uncertainty

Surrogate-based optimization
(Jones, 1998; Jones, 2001; Queipo, 2005; Barton, 
2006; Shan, 2010)

Very low computational expense when 
solving

Requires preliminary dataset, difficult to fit 
stochastic models well, results based on 
simplified model

Approved for Public Release 10



• Aerospace systems

• Largely semantic similarities

• Mission thread studies

• Autonomous robots

• Task optimization has binary outcomes

• Route planning

• Wargames

Related Mission Applications

Image credits:  https://www.nasa.gov/

https://penntoday.upenn.edu/news/designing-autonomous-robots-change-shape-adapt-challenging-environments

https://www.wargamer.com/articles/two-player-table-top-war-games-wife/

None of this previous work optimizes 

mission models with high amounts of 

uncertainty and a binary pass/fail objective

Approved for Public Release 11



MLO Approach

Mission model input

• Takes in design decisions
• Contains operational and 

environmental uncertainty
• Outputs success/failure

Mission-level optimization

• Formulate to maximize 
probability of success

• Include large enough Monte 
Carlo simulation in-the-loop

• Select algorithm
• Run optimization routine
• Compute success rate with 

very large Monte Carlo 
simulation

Optimal solution output

• Mission-optimal 
decision input variables

• Estimated probability 
of mission success

Approved for Public Release 12



MLO Approach Comparison

Optimizer

System Model
x f

Monte Carlo Simulation 
of Mission Model

x

Standard

Optimizer

P(S)

MLO

How is this different from standard approaches?

Approved for Public Release 13



1.  How does an MLO solution compare to Pareto-optimal designs from a 

traditional multiobjective optimization approach, with respect to mission 

success probability, key performance parameters, and computational 

resources required?

2.  How do the choices of optimization algorithm and number of mission 

model samples affect MLO results?

Research Questions

Approved for Public Release 14



• One or several catapults firing at escaping target

• Target appears at random location in front of 

catapults and escapes directly away

• Very fast run times

• Success:  Hitting the target before it escapes out 

of range

• Physics-based simulations

• Developed with Matlab

Catapult Mission Model

Approved for Public Release 15



Catapult Model Data Flow

Catapult 
Physics

Exterior 
Ballistics

Terminal 
Ballistics

Parameters 
passed between 

models

Design 
inputs

OutputsExternal 
inputs

1. Projectile mass
2. Torsion spring 

constant
3. Arm length

Wind speed and 
direction

Target initial 
distance

Cost

Projectile 
initial 

conditions
Maximum 

Range
Hit target?

Operational 
inputs

4. Number of 
catapults

5. Crew number 
and quality

6. Manufacturing 
quality

Accuracy, fire rate

Decision variables

Approved for Public Release 16



Catapult Decision Variables and Bounds

Input
Symbol 
(Units)

Lower 
Bound

Upper 
Bound

Cost Weight

Number of 
catapults

𝒏𝒄𝒂𝒕 (#) 1 8 𝒏𝒄𝒂𝒕

Mass of projectile 𝒎𝒑 (kg) 1 300 0.1

Spring constant 𝒌 (N*m/rad) 10,000 40,000 0.5

Arm length 𝒍 (m) 1 15 0.15

Manufacturing 
quality

𝒒𝒎 (unitless) 0 1 0.5

Crew quality 𝒒𝒄 (unitless) 0 1 0.5

Approved for Public Release 17



• Three levels of Monte Carlo samples per design tested 

(𝒏𝒔𝒂𝒎𝒑) :  100, 500, 2000

• Genetic (GA) and pattern-search (GPS) optimization 

algorithms

• Parametric formulation – one routine per 𝒏𝒄𝒂𝒕

• Objective:  Maximize P(S) 

• Constraint: Less than 5 “cost units”

• Probability of success P(S) evaluated with 100,000 sample 

Monte Carlo simulation

MLO Methodology

Approved for Public Release 18



• Four KPP’s used as objectives

• Minimize targeting error

• Maximize fire rate

• Maximize launch distance

• Maximize projectile radius

• Solved with NSGA-II

• Resulted in 70 Pareto-optimal designs

• Pareto set evaluated with mission model to find P(S) 

for comparison

MOO Benchmark Methodology

19



Sensitivity Analyses

100 Samples per Design 2,000 Samples per Design

Approved for Public Release 20



Best Design Results

Formulation 𝒏𝒄𝒂𝒕 𝒎𝒑 𝒌 𝒍 𝒒𝒎 𝒒𝒄 Fn. Eval. P(S)

MOO best 4 14.7 37540 5.36 0.589 0.914 7.24x106 0.735

MLO GA 3 219.3 37460 14.99 0.912 0.882 1.04x109 0.830

MLO GPS 4 126.2 39720 10.13 0.531 0.746 1.10x107 0.788

Optimizers

Formulation 𝐅𝐢𝐫𝐞 𝐑𝐚𝐭𝐞
(shot/s)

𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲
(CEP)

𝐑𝐚𝐧𝐠𝐞
(m)

𝐏𝐫𝐨𝐣. 𝐑𝐚𝐝.
(m)

𝐂ost
(constraint=5)

MOO best 0.114 8.27 359.7 0.112 4.93

MLO GA 0.118 8.26 375.6 0.276 4.73

MLO GPS 0.110 8.34 373.7 0.229 4.97

Key Performance Parameters

Approved for Public Release 21



Monte Carlo Sample Size and Algorithm Results
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Approved for Public Release
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Monte Carlo Sample Size and Algorithm Results

Formulation Algorithm nsamp Fn. Eval. (x106) P(S)

MOO NSGA-II N/A 7.24 0.735

MLO GA 100 21.7 0.757

MLO GA 500 166 0.781

MLO GA 2,000 1040 0.830

MLO GPS 100 1.28 0.717

MLO GPS 500 3.27 0.783

MLO GPS 2,000 11.0 0.788
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• MLO overall found highly successful designs

• All but one MLO routine found a better P(S) than benchmark

• MOO benchmark overall much worse

• Average P(S) = 0.13

• Only 7 out of 70 solutions had P(S) > 0.5

• Choosing MOO design requires subjective criteria

• Shows value of both mission modeling and MLO

• MLO is computationally expensive

Interpretation of Results

Approved for Public Release 24



• MLO is straightforward to set up

• Mission model development requires a substantial effort

• MLO routines were able to find successful designs more easily

• High-sample P(S) evaluation runs are important to find best 

designs – without this some parametric MLO solutions would have 

been suboptimal

• Contributions

• Formulated and demonstrated a novel method for optimizing mission-

level problems

• MLO approach finds successful designs without subjective decisions

Summary and Contributions

Approved for Public Release 25



• Further quantify the influence of optimization 

algorithm choice and Monte Carlo simulation size 

on MLO

• Test MLO with more efficient optimization 

techniques

• Surrogate-based optimization

• Multifidelity optimization

• Evaluate MLO with more diverse and complex 

mission models

• Identify the most suitable methods and tools to 

create and validate mission models

Future Research Opportunities

Approved for Public Release 26



Thank you!

Brian Chell

bchell@stevens.edu


