

Interface Management – the Neglected Orphan of
Systems Engineering

Paul Davies
thesystemsengineer.uk
+44 (0)7969 795 850

paul@thesystemsengineer.uk

Copyright © 2020 by Paul Davies. Permission granted to INCOSE to publish and use.

Abstract. Every Interface is an opportunity to lose information, time, control and / or money
through contention between stakeholders at either end. There are many issues surrounding Interface
management, which are relatively unexplored in the engineering literature. Interface management is
perceived as a critical skill in the engineering of successful systems (INCOSE TP-2018-002-01.0),
but finding useful material on the subject proves elusive. It is not that there is a gap in the collective
Body of Knowledge (BoK) – but there is definitely a gap in the documented BoK. This paper ex-
plores some of the characteristics of this gap, and outlines some of the key concepts in best prac-
tice. Along the way, the differences between best practice for interfaces and best perceived practice
for architecting systems are noted, and recommendations for changes in approach are given.

Introduction
Typically, it is an unpopular task on a project to be asked “Just resolve the interfaces”; and whatev-
er effort is allocated, it generally happens too late and is seen to be a root cause of project failures.
This is of course a sweeping generalization, yet there is a grain of truth here; and it becomes a vi-
cious circle of blame waiting for the next project to do the same.

Aims of the paper:
• To challenge the perception of an engineer as someone who concerns himself (or herself)

solely with the realisation of the functionality of their element of the system, to the exclu-
sion of all interactions. One of the objectives of systems engineering is to act in an integra-
tive, holistic manner rather than reductionist.

• To remove the excuse “I’ve never been trained on this, and there is no useful reference ma-
terial on how to do it.” Experienced systems engineers and architects know that design
cannot proceed effectively until interfaces have been resolved and defined; inexperienced
engineers do not know, and are unaware that it is crucial, due to the gaps in the documented
knowledge base captured by the paper.

• To change the way we go about architecting systems; left-shifting the treatment of interfac-
es rather than leaving it until after the physical design needs integrating. Even though such
left-shifting is clearly visible in best practice, it is not present in the literature, a shortcoming
that needs to be remedied.

Literature Survey
We start with a survey of what is documented. Mostly this consists of the usual standards on struc-
turing interface documentation, some process standards, plus there are a few good books on the ar-
chitecting of systems with at least some relevant content.

Standards
One of the first standards on Systems Engineering, (IEEE 1220) starts with a System Break-
down Structure (SBS) devoid of interfaces as early as page 3. Admittedly there are better figures,
and process requirements to specify interfaces at each level of system decomposition, later in the
standard, but in each case the treatment of interfaces is as an adjunct to the act of specification at
that level, almost as a housekeeping activity. No “how-to” process detail is offered.
A more useful standard, (EIA-632) contains a grand total of 7 lines on interface definition, one of
which implies that interfaces can be mandated by one authority, which is usually incorrect. There is
also one table on recommended processes for system decomposition which is almost a copy of the
process in (IEEE 1220), with interface definition again left to the last activity at each stage.
Further domain-specific standards, (DI-IPSC-81434), (DI-IPSC-81436), (FAA-STD-025e),
(NASA 1997) and (NIST 2002) are significantly better, and for some types of interface (mainly
software and communications) give good guidance on interface specification content. However,
they still have shortcomings in other engineering fields and domains, and are lacking any treatment
of proper process in realizing the required specification.
The INCOSE Systems Engineering Handbook (SEH) (INCOSE TP-2003-002-04), in turn
based on ISO15288, is better still, and considers interface analysis as part of the process on system
architecture definition. There is another short section on Interface Management as a cross-cutting
technology, but detail is light.
The INCOSE Systems Engineering Body of Knowledge (SEBoK) (SEBoK 2018) has some
good content, particularly in the sections on “Synthesizing possible solutions”, “System architec-
ture”, “Logical and Physical architecture model development”, and “System Integration”. There are
also several interesting examples and case studies of good and bad practice and outcomes. Taken as
a whole, it avoids most of the shortcomings listed under “Gap analysis” below, but it lacks an inte-
grated lifecycle-based treatment of interfaces.
The INCOSE Competency Frameworks (INCOSE TP-2018-002-01.0) and its 2010 predecessor
identify Interface Management as an essential competency in its own right. There are some brief
points on good practice, and how to spot it, but no end-to-end narrative.

Books on system architecting
(Hitchins 1992), (Grady 1994) and (Sillitto 2014) all have good treatments on N2 charts (or
“Coupling Matrices” as used by Grady and by the SEH), and on their use in changing or optimizing
architectures. However, they are quite hard to follow in some cases, and are not fully integrated
with other interface concepts described below. All are recommended reading anyway, for the as-
piring system architect!

Gap analysis
In summary, the documented body of knowledge is deficient in the following areas:

• It’s all about the “what” must be done, and in what format, but there is not enough useful
instruction on the “how”.

• It mostly concerns software and communications interfaces, particularly the Standards.

• It is focused on decomposition of systems into system elements in the strictly functional,
then physical order, with interfaces as adjuncts at each level. Very little consideration is
given to architecting by minimisation of interface complexity, or to using interface analysis
iteratively with other architecting methods.

• Interface analysis at each level of decomposition is treated as a snapshot activity, with no
end-to-end timeline of project practices in interface management.

The “Somebody else’s problem” field
Douglas Adams, in his novel “Life, the Universe, and Everything” described the Somebody Else’s
Problem (SEP) field as “something we can't see, or don't see, or our brain doesn't let us see, because
we think that it's somebody else's problem. The brain just edits it out, it's like a blind spot” (Adams
1982). Interfaces can easily be subject to the SEP field, as engineers are pre-programmed to worry
about internal functionality of a system or system element.

Consider the Seven Samurai model of
a system development – see Figure 1,
reproduced by kind permission of
James Martin (Martin 2004). It implies
the interaction between the system and
the problem space, and there are inter-
actions with all other systems depicted,
over a timeline. And yet, the tempta-
tion for an engineer is to leap straight
to solution space, and at least mentally
to draw a System Breakdown Struc-
ture, see Figure 2, within a few sec-
onds.

Comparing Figure 1 with Figure 2 – where
have all the interfaces gone? In the SBS, we
cannot see the black-box external interfaces
at system level, nor the white-box interfaces
between system elements. We have
successfully created the SEP field. And now
a Work Breakdown Structure (WBS) will be
created to match the SBS, again deferring
any consideration of interfaces.

Does it really matter? Can’t we allocate responsibility for the interfaces to the engineer responsible
for each system element? Here are some reasons why not:

• Every interface connects at least two systems or system elements. In the majority of cases,
there is no single span of control over both ends – so the interaction between them needs at
least two-party negotiation and agreement, preferably rigorously managed through an
Interface Control Document (ICD).

Figure 1 - Seven Samurai

Figure 2 - System Breakdown Structure

• Integrating across interfaces takes longer than integrating the functionality of a system
element. So designing and testing the interfaces has to happen earlier.

• As systems are decomposed into system elements, the number of potential interfaces grows
much faster than the number of elements. In the SBS example at Figure 2, if each system
element is connected to every other, and to 2 external systems, that’s potentially 14
interfaces to manage. And there will be many more at the next level of decomposition. The
numbers may turn out to be an exaggeration, but the principle holds true.

• Traceability – interface requirements may need to trace to the specifications at each end, as
well as to the parent system.

Hence the effort needed is seen to outstrip the effort allocated to a single system element, in a
non-linear manner. Systems engineers need to focus attention on interfaces, particularly in early
planning and estimating stages of projects, to overcome the SEP field.

Elements of best practice
In this section, the key concepts of interface management are briefly described, and logically
chained together. Space here does not allow this paper to provide full explanations, and architecting
involving interfaces does take significant time to master. It is hoped that the systems engineers will
mostly be familiar with all these concepts, but repeated deliveries by the author of a tutorial on this
topic would suggest that this may not be the case. If the reader is indeed unfamiliar, try reading
(Davies 2019) for help. See Figure 3 for the key concepts.

Figure 3 - Useful concepts in Interface Management: Separation principle (top left), Context dia-

gram (top right), Sequence diagram (bottom left), layered instantiation of interfaces (bottom right).

The separation principle simply says that interface specifications should not contain descriptions
of interaction functionality. They should go in the functional specifications of the interacting enti-
ties; the bounds of exchange sequences could go in a higher-order (e.g. containing system) specifi-
cation, or in the Interface Control Document if absolutely necessary.

Black-box and white-box models are essential items in any systems engineer’s armory. Black box
- the view of the system functions and interaction observable at the system boundary, without

knowing anything about its internals. White box – extending the model to include the system inter-
nals and all their interactions.

Context diagrams are a convenient representation of a black box model, showing a system bound-
ary separating what is inside the scope of the system from what is outside; the external systems,
actors and environments with which it interacts; and enumerating those interactions.

Scenarios & sequence diagrams are helpful pictures in eliciting interface requirements, by turning
stakeholder descriptions of interaction sequences into pictorial sequences of exchange of mass, en-
ergy and information. First at black box level, then extending to white box.

Layered models of interfaces, for example the “OSI 7-layer” model for systems interconnection,
is a useful metaphor for dealing with the migration from black box to white box level. Sys-
tem-to-system interaction can be represented as an interface at the “application” layer, which can
later be instantiated by ‘interactions” downwards into the system element hierarchy and then be-
tween the various white box elements; even when the interaction is not just software or communi-
cations.

The final key weapon in the systems engineer’s armory is the N2 chart (see Figure 4). This paper
does not provide full explanations – see (Davies 2019), or indeed (SEBoK 2018), (Sillitto 2014),
(INCOSE UK w2 2012) or (Grady 1994) which all give at least partial coverage.

Figure 4 - Uses of N-squared charts in interface management: Black box (top left), white box (top
right), optimal architecture (bottom left), phased timeline (bottom right).

N2 charts may be used successively at black box level, white box level, and iteratively with system
architecting to minimize number and complexity of interfaces in trial decompositions. Some of the
texts quoted call this “reorganization of coupling matrices”, but those treatments do not attempt to
re-define system elements to change the entries in the N2 charts. Finally, in Figure 4 we note that
there is not just one N2 chart in the life of a project, there are many: for as-is and to-be systems,
phased integration setups, intermediate delivery configuration states, and configurations to support
deployment, maintenance, in-service test, replacement and upgrade.

None of these best practices are new; all are known to experienced practitioners, architects and in-
tegrators. However, since the engineering literature and curricula do not cover these practices well,
there is a need for a unifying treatise and more widespread propagation of the practices.

Left-shifting in architecting systems
The use of interface analysis as an up-front tool in architecting, rather than as a capture mechanism
for managing a design that has already been decomposed, is illustrated with several recurrent ar-
chitecting problems requiring this modified approach. Thus we achieve better integration of logical
and physical architecture.

Example - Overhead Line Electrification (OLE) in rail

Consider a pantograph arm mounted on top of an electric train (Figure 5). Its mechanical interface
with the overhead line electrification cable may be moving at more than 100mph, sliding from side
to side of the pantograph arm, and electrical connectivity may be interrupted for short periods of
time. And yet we can still think of it as a single plane of the interface, across which a number of
mass, energy and information flows take place.

Some of these are interfaces with other systems or system elements; some are interfaces with the
environment. However, in each case our system (the train) must do something in response to what
is happening across the interface.

If, at the requirements and architect-
ing stages, we were to focus only on
the intended usage of the interface
(electrical energy transfer), we
would miss all the (undesirable) as-
pects of the other issues in the inter-
action. By the time these were con-
sidered, we might already have made
design choices which made the han-
dling of the undesirable characteris-
tics impossible, over-expensive or
unmaintainable. So, by consideration

of the effects of the interface at the
physical instantiation, we collect a
set of additional system requirements

and design drivers, in a timely manner. Incidentally, in an exercise left to the reader, this is also an
excellent example of the use of a layered model of interfaces in resolving the transfer of electrical
power from generation capability to electromotive capability of the train.

Common residual architecting problems involving interfaces
There are some recurring patterns in system design that impact on architecting decisions about in-
terfaces, all adding to the case for including interface issues much earlier than in common practice.
Power – Assuming there is a single external source of power for the system, whether it be genera-
tor, mains, or aircraft high-voltage DC, how best to supply power to our system elements? Should
each unit do its own conversion from the external source (so multiple external interfaces), or have a
single power supply unit down-converting to the voltages and currents required by all the other
units (multiple internal interfaces)? The former may be harder to organize, and carries potential

Figure 5 - Overhead Line Electrification

safety issues. The latter is “easier”, in the sense that the multiple Interfaces are under single span of
control, but gives a single point of failure.

Communications – Likewise, is each system element going to communicate with external systems,
or will there be a single “concentrator” system element or nodal point? The former allows design
teams to proceed independently – perhaps faster to implement, but potentially leading to integration
headaches. The latter allows a global overview of all the external interfaces, but centralizes a po-
tentially heavy workload.
Control – For a system with diverse functionality in response to either external conditions, or to
operator input, control of the behavior of each system element can be centralized or distributed. If
distributed, it can be difficult to guarantee coherence of the integrated system. If centralized, there
is still a choice between high-level and low-level control signals or messages. The former (“Do this,
you work out how”) makes for a simpler interface but a more complex design task and integration
sequence. The latter (“Do exactly this, I’ve worked out how, here are the control signals”) makes
for more complex interfaces, perhaps a simpler integration sequence, and a higher centralized
workload. This is a more acute problem if the system has multiple states and modes.
Built-In Test (BIT) – This is exactly analogous to the control problem above. “Test yourself, tell
me whether or not you’re OK” (simple interfaces, distributed design, risky integration) or “Here are
the test signals, I’ll interpret the results” (complex interfaces, single complex system element de-
sign). Which is “best”?
Environmental and mechanical resilience – For a system with groups of co-located system ele-
ments exposed to a harsh environment, should we design and test each system element to survive
that environment? Or should we design a protective casing that insulates the contained system ele-
ments from that environment? If there are existing designs for the former architecture that meet, or
can be modified to meet, the environmental requirements, that is probably simplest. However, if
this is not the case, or we wish to reduce costs by using commercial equipment not designed to re-
sist the environment, then the latter is probably best. Beware, however, that no protective casing is
perfect, particularly for shock and vibration. We will have a number of derived environment and
mechanical interfaces for each contained system element, across which the energy exchanges take
place, and which may be difficult to calculate and test.

These are all examples where the impact of the interfaces needs to be treated as a major driver in
architecting, rather than as a follow-on activity to functional and physical decomposition. The “op-
timum” solution (e.g. centralized versus distributed?) frequently becomes a “least-bad” solution,
negotiated between multiple stakeholders.

Lifecycle considerations
Having accepted the principle of including black-box and white-box interfaces in system architect-
ing choices, a flow diagram for the process is suggested at Figure 6.

Figure 6 - Lifecycle of interface-based architecting

There is a key architecting loop clearly shown. Candidate system decompositions are evaluated
based on the organizations involved (and perceptions of their willingness to negotiate and adapt to a
satisfactory interface agreement), and the number, complexity and risk of the interfaces derived.
The fundamental change in philosophy from most texts is that the architecting stage is not con-
cluded until the interfaces are deemed satisfactory. Note again the bottom right-hand quadrant of
Figure 4, and its supporting description: the final system configuration is not the only set of inter-
faces to be analyzed and included in the architecting loop. Integration and test setups, intermediate
configuration states, and considerations from the Deployment and Support Concepts (INCOSE
TP-2003-002-04) all affect the architecture acceptability.

Lastly, we look at future-proofing of interfaces to and from systems yet to be implemented, or leg-
acy systems not under client control.

Figure 7 - A typical interface requirement

This is a requirement with a huge hidden risk attached, and this author has suffered from it on nu-
merous occasions. What if the interface to Bearer X is unpublished or immutable? What if System
B has a proprietary interface, and its design authority refuses to cooperate? If the acquirer of Sys-
tem A has no authority over the suppliers of Bearer X or System B, this requirement is asking the
System A supplier to sign a blank check. For a recommended method in dealing with this situation,
see (Davies 2019). It is based on foreseeing the future requirement and insisting on at least draft
Interface Requirement Specifications (IRS) at the time of entry into operations of X and B; or at
least agreed between the acquirer and the owner-operators of X and B. This IRS is then used as part
of the contracting package for the new system, with engineering effort and budget provision re-
served for elaborating the IRS into an ICD.

Conclusions
The importance of looking beyond system element functionality to include interfaces has been out-
lined. Those interfaces need to be resolved: lift up your head, pick up the phone, and resolve them!
Please do not fall victim to the Somebody Else’s Problem field.

You are now armed with suitable models to deal with difficult interface scenarios, covering the
whole lifecycle of both the system and its interfaces. An attempt has been made to overcome the
gaps in the standards and literature, and between best practice and common practice.

Arguments have been presented for left-shifting the treatment of interfaces in architecting. There
may be no truly optimal architecture taking all the foregoing aspects into account, but using the
principles outlined, we should at least improve on common practice.

References
Adams, D. 1982, Life, the universe, and everything, Pan Books UK
Davies P.R. 2019, Don’t Panic! The Absolute Beginner’s Guide to Interface Management, INCOSE

UK
DI-IPSC-81434 1999, Data Item Description: Interface Requirements Specification

(DI-IPSC-81434 Revision A), US Department of Defense
DI-IPSC-81436 1999, Data Item Description: Interface Design Description (DI-IPSC-81436

Revision A), US Department of Defense
EIA-632 2003, Processes for Engineering a System, Electronic Industries Alliance, Philadelphia,

PA, USA
FAA-STD-025e 2002, Federal Aviation Administration Standard: Preparation of Interface

Documentation, US Department of Transportation
Grady, J. 1994, Systems Integration, CRC Press Inc., Boca Raton, FL, USA
Hitchins, D.K. 1992, Putting Systems to Work, John Wiley & Sons, UK
IEEE 1220 2005, Standard for Application and Management of the Systems Engineering Process,

Institute of Electrical and Electronic Engineers, USA
INCOSE TP-2003-002-04 2015, INCOSE Systems Engineering Handbook, Fourth Edition,

INCOSE
INCOSE TP-2018-002-01.0 2018, INCOSE SE Competency Framework’, Issue 04 (a revised

edition superseding Issue 03 2010), INCOSE
INCOSE UK w2 2012, Omega 2 Guide ‘N-Squared: brief guide’, Issue 1.0, INCOSE UK –

available online to INCOSE UK members only
Martin, J. 2004, The Seven Samurai of Systems Engineering, Proceedings of the INCOSE

International Symposium 2004, INCOSE
NASA 1997, Reference Publication 1370 - Training Manual for Elements of Interface Definition

and Control, NASA
NIST 2002, A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts,

Technical Note 1447, National Institute of Standards and Technology
SEBoK 2018, Guide to the Systems Engineering Body of Knowledge (SEBoK) Version 1.9.1,

INCOSE, viewed 21st May 2019, < www.sebokwiki.org>
Sillitto, H. 2014, Architecting Systems: Concepts, Principles and Practice, College Publications

Biography

Paul Davies. Paul supposedly retired in early 2014, but soon realised he needed
to give something back to the systems engineering community and help mentor
the next generation of practitioners. An experienced systems engineer with a
sound track record in delivering successful projects over thirty years in the de-
fence and aerospace industry, six years in the nuclear industry, and a couple of
years in rail, he has a wealth of diverse experience to call on. Paul has con-
ducted training courses and workshops in requirements, interface management,
verification and validation, systems engineering management, competence as-
sessment, and SE return on investment, with very positive feedback.

