SoSECIE Webinar

Welcome to the 2019 System of Systems Engineering Collaborators Information Exchange (SoSECIE)

We will start at 11AM Eastern Time Skype Meeting +1 (703) 983-2020, 46013573# You can download today's presentation from the SoSECIE Website: <u>https://mitre.tahoe.appsembler.com/blog</u> To add/remove yourself from the email list or suggest a future topic or speaker, send an email to sosecie@mitre.org

NDIA System of Systems SE Committee

Mission

- To provide a forum where government, industry, and academia can share lessons learned, promote best practices, address issues, and advocate systems engineering for Systems of Systems (SoS)
- To identify successful strategies for applying systems engineering principles to systems engineering of SoS

Operating Practices

- Face to face and virtual SoS Committee meetings are held in conjunction with NDIA SE Division meetings that occur in February, April, June, and August
- SoS Track at NDIA 22nd Annual Systems Engineering Conference, Grand Hilton Tampa Downtown, Tampa, FL, October 21-24, 2019
 - Conference Info: <u>http://www.ndia.org/events/2019/10/21/22nd-annual-systems-and-mission-engineering-conference</u>

NDIA SE Division SoS Committee Industry Chairs:

Mr. Rick Poel, Boeing

Ms. Jennie Horne, Raytheon

OSD Liaison:

Dr. Judith Dahmann, MITRE

Simple Rules of Engagement

- I have muted all participant lines for this introduction and the briefing.
- If you need to contact me during the briefing, send me an e-mail at sosecie@mitre.org.
- Download the presentation so you can follow along on your own
- We will hold all questions until the end:
 - I will start with questions submitted online via the CHAT window in Skype.
 - I will then take questions via telephone; State your name, organization, and question clearly.
- If a question requires more discussion, the speaker(s) contact info is in the brief.

Disclaimer

- MITRE and the NDIA makes no claims, promises or guarantees about the accuracy, completeness or adequacy of the contents of this presentation and expressly disclaims liability for errors and omissions in its contents.
- No warranty of any kind, implied, expressed or statutory, including but not limited to the warranties of non-infringement of third party rights, title, merchantability, fitness for a particular purpose and freedom from computer virus, is given with respect to the contents of this presentation or its hyperlinks to other Internet resources.
- Reference in any presentation to any specific commercial products, processes, or services, or the use of any trade, firm or corporation name is for the information and convenience of the participants and subscribers, and does not constitute endorsement, recommendation, or favoring of any individual company, agency, or organizational entity.

2019 System of Systems Engineering Collaborators Information Exchange Webinars Sponsored by MITRE and NDIA SE Division

June 25, 2019

A Tool for Architecting Socio-Technical Problems: SoS Explorer Dr. Cihan Dagli

> July 16, 2019 Modular Online Open SoS Education (MOOSE) Mr. Kyle Hastings, The MITRE Corporation

July 30, 2019 Graph Theoretic Architectural Analysis: Analysis of Complex Systems and Systems of Systems Ms. Laura Antul

> August 13, 2019 TBD

> August 27, 2019 TBD

2019 System of Systems Engineering Collaborators Information Exchange Webinars Sponsored by MITRE and NDIA SE Division

September 10, 2019

An Analysis of Systems-of-Systems Opportunities and Challenges Related to Mobility Mr. Jakob Axelsson

> September 24, 2019 TBD

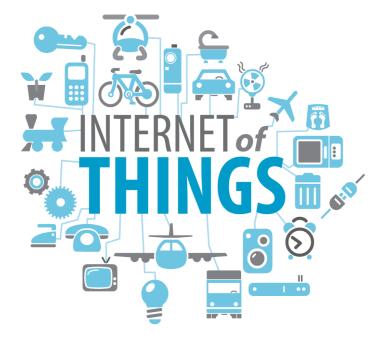
> > October 8, 2019 TBD

October 22, 2019 Modeling System of Systems Configurations Mr. Jeremy Buisson, Dr. Isabelle Borne and Mr. Franck Petitdemange

Nov 5, 2019

Irrational System Behavior in a System of Systems Mr. Douglas L. Van Bossuyt, Mr. Bryan M. O'Halloran and Mr. Ryan M. Arlitt A Tool for Architecting Socio-Technical Problems: SoS Explorer

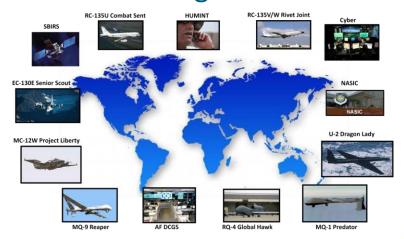
Cihan H. Dagli Missouri University of Science and Technology



SYSTEM OF SYSTEMS

Changing Human Living Behaviors

SYSTEM OF SYSTEMS



"The network of physical objects that contain embedded technology to communicate and interact with their internal states or the external environment."

SYSEM OF SYSTEMS

Internet of Things for Defense

MISSOURI

Internet of Things for Manufacturing

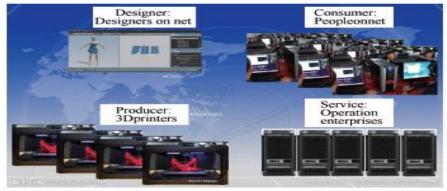
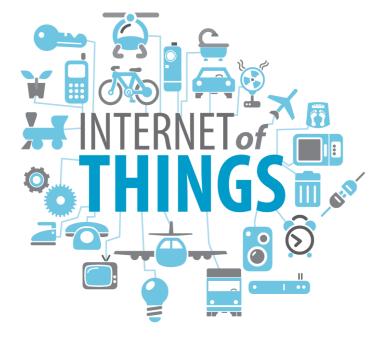



Fig. 4. Social manufacturing array with 3D printing centers.

From Mind to Products: Towards Social Manufacturing and Service Gang Xiong, et.al. IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 5, NO. 1, JANUARY 2018

SYSTEM OF SYSTEMS

"This is a complex adaptive systems that can have emergent behavior and requires systems integration and engineering in their design and operation."

SYSTEM OF SYSTEMS

The integration of technology into society is a socio-technical problem.

- The solution to this type of problem results in a system of systems often called a cyber-physical system.
- These systems of systems are ubiquitous, ranging from transportation and healthcare to energy and defense.
- How well they are architected has a significant impact on sustainability and quality of life.

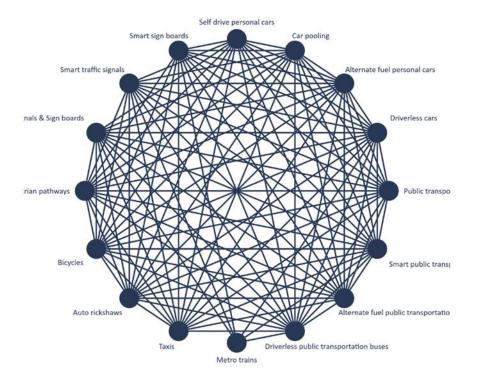
SOS ARCHITECTING

At its core, system of systems architecting is finding the set of systems and interfaces that best satisfy a set of given objectives while providing all of the the required capabilities. These objectives are the key performance measures of the architecture.

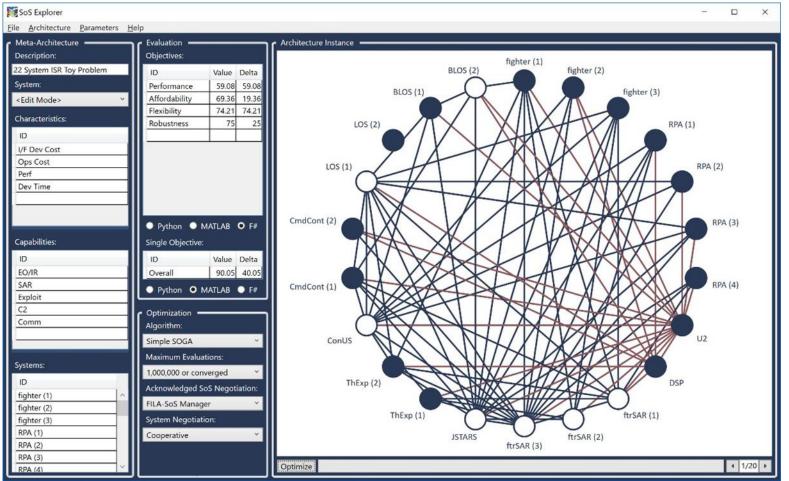
SOS CHALLENGES

Defining an optimal system of systems architecture poses significant difficulty as the problem presents:

- A high-dimensional solution space and trade space (difficult to search or visualize),
- Numerous objectives (causes Pareto breakdown and is difficult to optimize),
- Interactions that create emergent behaviors (difficult to predict).


APPROACH

- 1. Model each objective as a function of systems and interfaces. The systems are defined by characteristics, capabilities, and feasible interfaces.
- 2. Model architectural constraints in terms of systems, interfaces, and capabilities.
- 3. Use a many-objective optimization algorithm to find optimal architectures while maintaining constraints.
- 4. Provide solutions to the decision-maker in a manner that allows the decision-maker to modify solutions and to explore the trade-space.


META ARCHITECTURE

Meta-architecture generated for the identified 16 systems and their interfaces are shown below.

SoS EXPLORER

MISSOURI

SoS EXPLORER

SoS Explorer is a tool developed by the Engineering ¹¹ Management and Systems Engineering department at Missouri University of Science and Technology.

- This tool incorporates the given approach, allowing modeling of objectives and constraints in three languages: MATLAB, Python, and F#.
- It utilizes evolutionary algorithms and supports both single- and many-objective optimization.
- It also provides an interactive GUI and real-time evaluation of solutions and deltas between solutions.

ARCHITECTING

- > Improving System-of-Systems means improving System-of-Systems architectures.
- > System-of-Systems architectures must make trade-offs between many competing objectives, for example:
 - Affordability
 - Reliability
 - Sustainability
 - Flexibility
 - Performance
- > Choosing a best architecture is a multi-Objective
 - optimization problem.

OBSTACLES

- > Multi-objective optimization problems are difficult for a number of reasons:
- > Finding optimal solutions requires careful modeling and advanced optimization methods.
- > The number of optimal solutions is usually too large to be comprehended.
- > Creating a final architecture from a subset of optimal solutions can easily become arbitrary and sub-optimal.

REMOVING OBSTACLES

- > System-of-Systems architecting could be improved by
 - Structuring the modeling effort
 - Optimization methods yielding targeted solution sets
 - Visualization of architectures
 - Interactive architectures allowing "what-if" experimentation

SoS EXPLORER

- > SoS Explorer is our solution to the previously identified architecting difficulties. It provides Structure for the modeling effort
- > A novel optimization method called "MOEA-DM" tailored to the needs of SoS architects:
 - Many-objective optimization
 - Use of clustering to cultivate a limited set of solutions of interest
- > Visualization of architectures
- > Interactive "what-if" experimentation

OVERALL APPROACH

- > The SoS architecture is comprised of systems and their interfaces.
- > Systems are modeled using the following attributes:
 - Characteristics: Real-valued attributes such as cost and MTBF.
 - Capabilities: Boolean attributes that a system either has or doesn't have such as a VHF radio or ground-mapping radar.
 - Interfaces: Boolean attributes describing whether a system can support an interface with another system.
- > The models output key performance metrics that are used as the objectives in the provided optimization algorithms.

MODELING

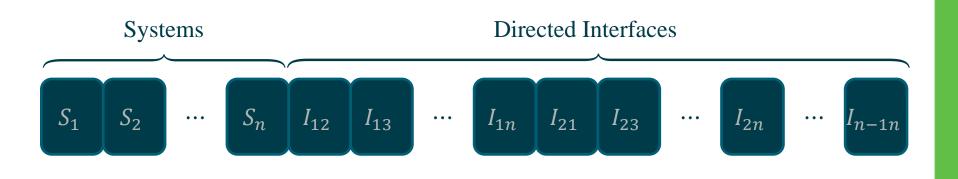
- > The models take as input the system attributes and calculate the values of the KPMs.
- > The models are used for two purposes: to display the KPMs for the displayed architecture and for the optimization algorithms.
- > Models may be written in any of the following languages:
 - Python,
 - MATLAB,
 - F#

LANGUAGE SELECTION

- > The languages can be selected based on the priority of the modeler:
 - Python provides portability and can be run without anything installed other than SoS Explorer.
 - MATLAB provides a rich set of tools but requires MATLAB to be installed.
 - F# is a compiled Microsoft .NET language and is around 100 times faster than MATLAB and Python. However, it requires the F# SDK (free from Microsoft) to be installed.

CODE GENERATION

- SoS Explorer can auto-gen source for each KPM in any supported language. The code is a fully functioning template for creating a model:
 - All systems and attributes are fully mapped
 - Sample calculations illustrating scalable methods of using the attributes and given architecture to find a KPM.


OPTIMIZATION

> SoS Explorer supports

- Single objective optimization
 - User specifies a function (Python, MATLAB, or F#) to map the objectives to a single overall objective
 - Employs the SOGA genetic algorithm
- Multiple objective optimization
 - > Supports the NSGA-III many objective algorithm
 - > Supports the MOEA-DM many objective algorithm

CHROMOSOME

Systems

MISSOURI

Undirected Interfaces

Cyber Security

Cybersecurity as a Centralized Directed System of Systems Example

Lirim Ashiku, SysEng PhD Student

Is this Strong Business Cybersecurity?

Normal Download

Backed access for trouble shooting MISSOURI

I just copy it

It people will take care of it.

BYOD to work

Can not remember it?.

What is Cybersecurity?

> Measures and actions taken to prevent unauthorized access to, manipulations of, or destruction of systems, networks and programs.

Why do we care?

- Identity theft
- Extortion
- Loss of important data
- Financial loss
- Business loss
- Transportation issues
- Digital manufacturing
- Power plants, etc

Focus on banking security

Why Banks?

- > According to research, most critical domain prone to cyberattacks
 - JPMorgan Chase (83 million accounts)
 - Heartland Payment Systems (134 million accounts)
 - Global Payments, Inc. (1.5 million accounts)
 - Citigroup (360K accounts)
- > Why?
 - Bank is where the money is
 - Data for millions of users
 - Profit through extortion, theft, fraud

Daily encounter

Cyberattack Categories

Category	Short Description
Malware	Malicious software infecting systems to steal information
Social Engineering	Psychological manipulation that enables access to information
Password Attacks	Password cracking tools and techniques to gain access to a network/account
Denial of Service	Attempt to disrupt network resources by flooding
Man in the Middle	Secretly hijack a session to alter information to end parties while mimicking legitimate communication
Drive by Downloads	Automatic downloads of malicious code matching weaknesses of outdated system flaws
Sniffers	Software tool that monitors data flow over network in real time
Malicious Insiders	Insider threat of a disgruntled employee to retaliate against an employer
Trap Doors	Secret entry point into application or OS for debugging and testing purposes bypassing security controls
Negligent Employee	Inadvertent compromise providing opportunity for hackers to leverage access to network

Defense Mechanisms

Category	Short Description
Anti-Malware	Software protection against malicious code
IDPS (6)	Network security threat detection and prevention technology
Contingency Planning	Alternatives for disaster recovery and business continuity
Penetration Testing	Deliberate software attack to exploit own system vulnerabilities
UE Behavior Analysis	Detection of anomalous behaviors deviating from normal conduct
Security Awareness	Educating and training personnel on cybersecurity
Security Policy	Organizational rules and procedures
Firewalls (5)	Network security device monitoring incoming and outgoing traffic
Cryptography	Use of protocols to conceal and handle information content
Multi-Level Security	Security schemes that enforce multiple level of security clearance
Whitelisting	Software applications provided at particular privilege
User Account Control	Ability to run and control applications base on security clearance
Auto-Backup	Recovery of data and operations against data loss incidents
Software Patching	Updates including critical patches to security holes
User Education	Creating a cybersecurity culture

System Capabilities

24 Systems10 Capabilities

If System advances capability $\rightarrow 1$ Otherwise $\rightarrow 0$

SoS Classes

- Virtual
- Collaborative
- Acknowledged

MISSOURI

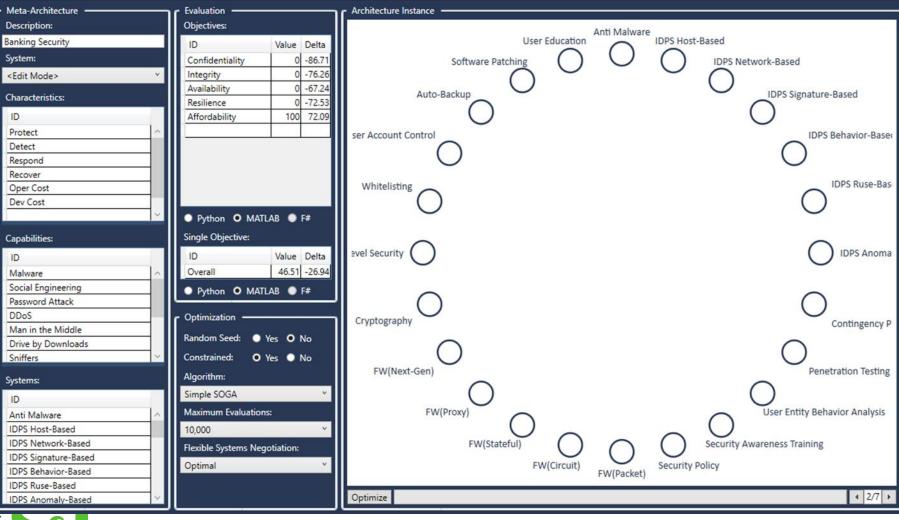
SET

Systems	Capabilities										
		Capaolittes									
	Malware	Social Engineering	Password Attack	DDoS	MiTM	Driveby downoads	Sniffers	Malicious Insiders	Trap Doors	Negligent Employee	
Anti-Malware	1	0	1	0	1	0	1	0	0	0	
IDPS-host	1	0	0	1	1	0	1	0	1	0	
IDPS-network	0	0	0	1	1	0	1	0	0	0	
IDPS-signature	0	0	0	1	1	0	1	0	0	0	
IDPS-behavior	0	0	0	1	1	0	1	0	0	0	
IDPS-rule	0	0	0	1	1	0	1	0	0	0	
IDPS-anomaly	0	0	0	1	1	0	1	0	0	0	
Cont. Planning	0	1	1	0	0	0	0	1	1	1	
Pen. Testing	0	1	1	0	0	1	1	1	0	0	
UEBA	0	1	1	0	0	0	0	1	1	1	
SAT	0	1	0	1	0	0	0	1	1	1	
Policy	0	1	0	1	0	0	0	1	1	1	
FW-packet	0	0	1	0	1	1	0	0	0	0	
FW-circuit	0	0	1	0	1	1	0	0	0	0	
FW-stateful	0	0	1	0	1	1	1	0	0	0	
FW-proxy	0	0	1	0	1	1	1	0	0	0	
FW-nextG	0	0	1	0	1	1	1	0	0	0	
Cryptography	0	0	1	0	1	0	0	1	1	1	
MLS	0	0	1	0	1	0	0	1	1	1	
Whitelisting	0	0	1	0	0	1	0	1	1	1	
UAC	0	1	1	0	0	0	0	1	1	1	
Auto-Backup	0	0	0	0	0	1	0	1	1	0	
Patching	0	0	0	0	1	0	0	0	1	0	
User Education	0	1	0	0	1	1	0	1	1	1	

Key Performance Parameters

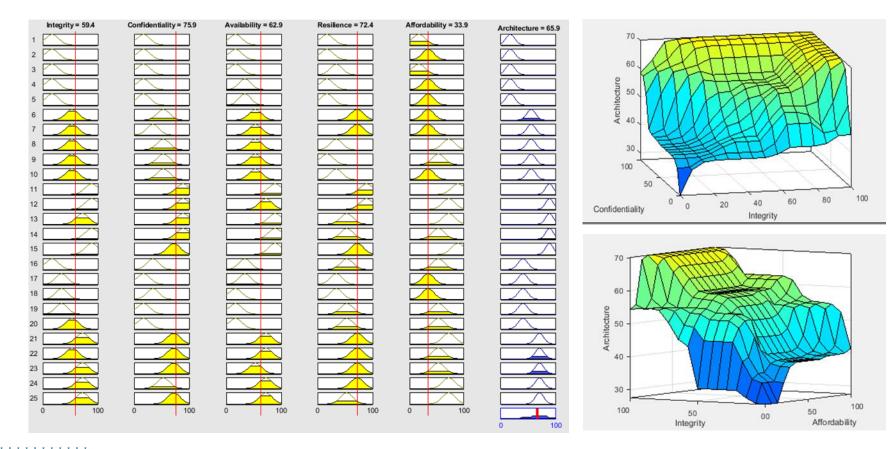
Confidentiality	 Assessess the ability to protect cyber space from unauthorized acces 				
Integrity	 Assesses the ability of preserving the consistency, accuracy and trustworthiness of cyber space 				
Availabiilty	 Assesses the ability of allowing authorized users to access cyber space 				
Resilience	 Assesses the ability to continually deliver the intended use despite incident occurence 				
Affordability	 Calculates the lowest LCC of implementing a given system, inversely related to cost 				

Measured in terms of

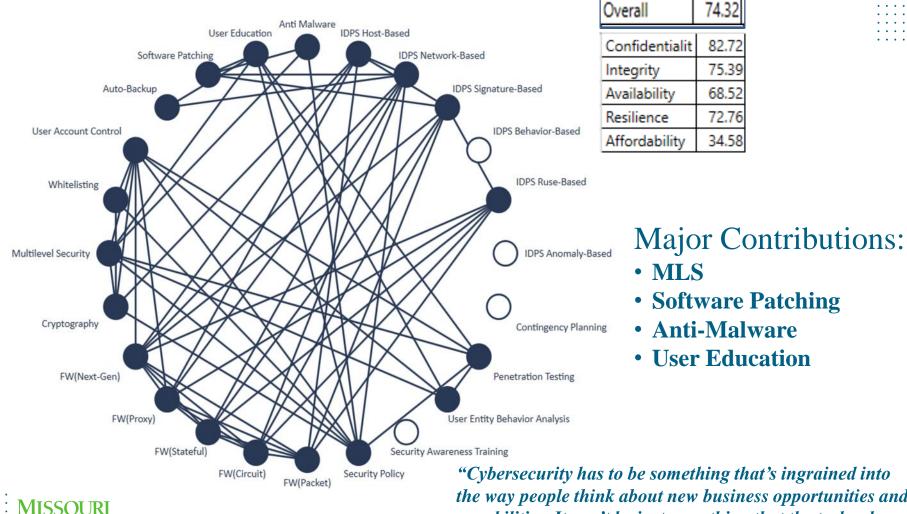

- **Protect** *the ability to defend cyber space from attacks*
- **Detect** *performance of detecting an attack*
- **Respond** *performance of responding to an attack*
- **Recover** *estimated time to full recovery*
- **IF Dev Cost** *interface development cost*
- **Oper-Cost** operational costs

MISSOURI SET

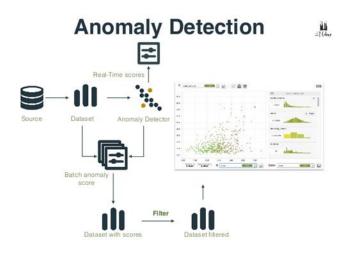
SoS EXPLORER

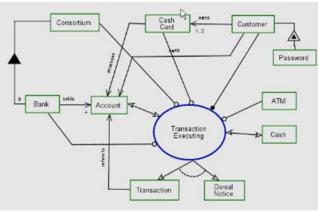

File Architecture Parameters Help

X



Fuzzy Rules and Trade Surfaces

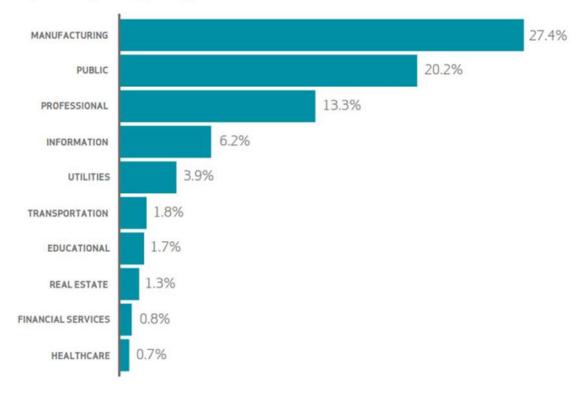

Selected Meta Architecture


"Cybersecurity has to be something that's ingrained into the way people think about new business opportunities and capabilities. It can't be just something that the technology guys are going to fix."

- Joe Nocera, US Financial Services Cybersecurity Leader

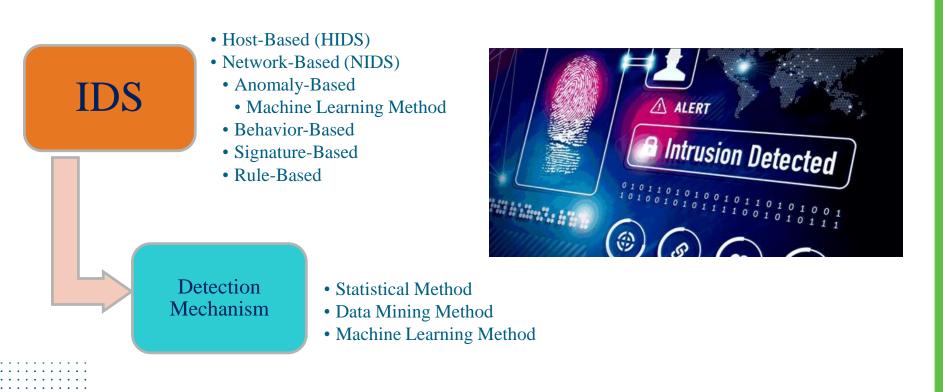
NEXT STEPS

Executable Models to test scenarios


MISSOURI

Time Dependent Performance

System:					
IDPS Host-Based					×
Characteristics:					
ID	Value				
Protect	2				
Detect	9.9				
Respond	8				
Recover	6.1				
Oper Cost	100				
Dev Cost		0.9			
Capabilities:					
ID	Has	Time	Co	ost	1
Malware	\checkmark				\sim
Social Engineering					
Password Attack					
DDoS	✓				
Man in the Middle	✓				
Drive by Downloads					
Sniffers 🗹				\sim	
Interfaces:					


DIGITAL MANUFACTURING CYBERSECURITY

Top 10 espionage-targeted industries

Network Intrusion Detection using Deep Learning

MISSOURI

SOS EXPLORER

SoS Explorer is Missouri S&T's solution http://emse.mst.edu/sos-explorer/

A novel optimization method called "MOEA-DM" tailored to the needs of cyber physical systems

Many-objective optimization

Use of clustering to cultivate a limited set of solutions of interest

Visualization of architectures Interactive "what-if" experimentation

PUBLICATIONS

Abhijit Gosavi, Siddhartha Agarwal, Cihan H. Dagli: Predicting Response of Risk-Seeking Systems During Project Negotiations in a System of Systems. IEEE Systems Journal 11(3): 1557-1566 (2017)

Ruwen Qin, Cihan H Dagli and Nnaemeka Amaeshi. "A Contract Negotiation Model for Constituent Systems in the Acquisition of Acknowledged System of Systems" IEEE Transactions on Systems, Man, and Cybernetics: 47(11): 3050-3062 (2017)

Konur, Dinçer, Hadi Farhangi, and Cihan H. Dagli. "A multi-objective military system of systems architecting problem with inflexible and flexible systems: formulation and solution methods." OR Spectrum (2016): 1-40.

Dincer Konur and Cihan H Dagli "Military system of systems architecting with individual system contracts", Optimization Letters, December 2015, Volume 9, Issue 8, pp 1749-1767

http://link.springer.com/article/10.1007/s11590-014-0821-z

Kilicay-Ergin, N. and Dagli, C. (2015), "Incentive-Based Negotiation Model for System of Systems Acquisition". Syst. Engineering., 18: 310–321. doi:10.1002/sys.21305 http://onlinelibrary.wiley.com/doi/10.1002/sys.21305/full

Paulette Acheson, Cihan Dagli, and Nil Kilicay-Ergin, "Fuzzy Decision Analysis in Negotiation between the System of Systems Agent and the System Agent in an Agent-Based Model," in International Journal of Soft Computing and Software Engineering[JSCSE], Volume 3, No. 3, Pages 25-29, (www.jscse.com) ISSN 2251-7545, 2013.

PUBLICATIONS

Agarwal, Siddhartha, Cihan H. Dagli, and Louis E. Pape II. "Computational intelligence based complex adaptive system-of-system architecture evolution strategy." Complex Systems Design & Management. Springer International Publishing, 2016. 119-132.

Agarwal,S., Wang, R., & Dagli, C., (2015) FILA-SoS, Executable Architectures using Cuckoo Search Optimization coupled with OPM and CPN-A module: A new Meta-Architecture Model for FILA-SoS, in Complex Systems Design & Management (CSD&M) editor, Boulanger, Frédéric, Krob, Daniel, Morel, Gérard, Roussel, Jean-Claude, P 175-192. Springer International Publishing.

Cihan H. Dagli and N. Kilicay-Ergin, "Chapter 4: System of Systems Architecting", in System of Systems Engineering, M. Jamshidi (editor), Wiley & Sons Inc., 2009, p. 77-101.

Gene Lesinski, Steven M Corns, Cihan H Dagli " A fuzzy genetic algorithm approach to generate and assess metaarchitectures for non-line of site fires battlefield capability" Evolutionary Computation (CEC), 2016 IEEE Congress on 24-29 July 2016. DOI: 10.1109/CEC.2016.7744085

Rahul Alaguvelu, David M Curry, Cihan H Dagli "Fuzzy — Genetic algorithm approach to generate an optimal metaarchitecture for a smart, safe & efficient city transportation system of systems "System of Systems Engineering Conference (SoSE), 2016 11th IEEE, June 12-16, 2016. DOI: 10.1109/SYSOSE.2016.7542935

MISSOURI

PUBLICATIONS

George Muller, Cihan Dagli "Simulation for a coevolved system-of-systems meta-architecture" System of Systems Engineering Conference (SoSE), 2016 11th IEEE, June 12-16, 2016. DOI: 10.1109/SYSOSE.2016.7542931 Dagli, Cihan H. "Engineering Cyber Physical Systems: Machine Learning, Data Analytics and Smart Systems Architecting Preface." Procedia Computer Science 61 (2015): 8-9.

Agarwal, S., Pape, L.E., Dagli, C.H., Ergin, N.K., Enke, D., Gosavi, A., Qin, R., Konur, D., Wang, R. and Gottapu, R.D., 2015. Flexible and Intelligent Learning Architectures for SoS (FILA-SoS): Architectural Evolution in Systems-of-Systems. Procedia Computer Science, 44, pp.76-85.

Curry, David M., and Cihan H. Dagli. "A Computational Intelligence Approach to System-of-Systems Architecting Incorporating Multi-objective Optimization." Proceedia Computer Science 44 (2015): 86-94.

QUESTIONS

