
The Internet of Simulation: Enabling
Agile Model Based Systems Engineering
for Cyber-Physical Systems
Stephen Clement, David McKee, Richard Romano, Jie Xu University of Leeds

Jose-Maria Lopez-Rodriguez Simware Solutions

David Battersby Jaguar Land Rover

1

Background
Large-scale complex cyber-physical systems

• IoT: 20+ billion devices by 2020 generating 300 ExaBytes of data
• Vehicles: ~100 ECU’s mixing safety critical and non-critical systems

Virtual Engineering
• Simulation
• Rapid (virtual prototyping)
• Explore system behaviours
• Life-Cycle – Digital Twins

Raghu Ramakrishnan, CTO for Data

“…if we can concentrate and build platforms that will lift the
level of abstraction …you could instead focus on understanding

whatever your domain is, …[if] the tools for making sense of your
data …were that much more accessible …the total cost of

ownership would plunge…that's [a] form of [Cloud] amortization.
…the tools need to come closer and closer to how you think

about your world...”

Improve virtual engineering life-cycle by providing
methods for increased co-simulation and integration

2

Motivation
Design & development of a complex system

• Involving experts and teams in different disciplines (e.g. SE and Computing)
• Requiring collaboration between teams
• Understanding of the global behaviour of the system
• Market pressures, demanding efficiency of collaboration

Concurrent and distributed design & development
• Distributed teams, external suppliers etc

(with various tools, solvers, platforms)
• Integration of component/subsystem-level solutions
• The sooner integration, the better

(leading to optimal design & development)
• Leverage connectivity facilitated by the Internet

“The way to build a complex system that works
is to build it from very simple systems that

work.”

Kevin Kelly, Founding Executive Editor
Wired Magazine

3

Existing Co-Simulation Standards
IEEE 1516:2010 HLA: High Level Architecture

• NATO standard
• Primary use case: H/W simulators for LVC simulation
• Integration defined as a static document, parsable as XML
• Communication achieved through RTI (runtime interface), only partially defined
• Simulations statically link to RTI dynamic libraries provided by RTI vendor with static definitions

of input and output sources
• Adjusting model integration requires recompiling source of model
• Primarily discrete time/event simulation only.

• Cyclic dependencies can cause continuous solvers to enter infinite loops of message passing

FMI: Functional Mockup Interfaces
• From the automotive domain
• Capable of continuous simulation
• Restricted to single memory environment, no distribution
• Simulations are represented as packages of C code that are compiled for a simulation run

4

Internet of simulation (IoS)
• Amortize large-scale simulation and improve co-simulation
• Net-Centric simulation platform

• Powered by the cloud based SOA
• Open APIs to connect simulations, people, processes and

things together
• Adherence to standards to guarantee connectivity with third-

party systems
• Providing simulations with a flexible interface that allows many

types of simulations to be integrated, e.g. various tools and
solvers

• Support for dynamic simulation integration (from two to
many simulators)

• Reconfigurable integrations without recompilation
• Simulation as a Service (SIMaaS)

• Provides self-contained readily integrated simulations
• Hosted as cloud services or on connected devices

• Workflow as a Service (WFaaS)
• Connect simulations together to define complete systems

M&S

5

Simulation as a Service (SIMaaS)
• Simulation tools and models are wrapped

as services and hosted in the Cloud
• Execution, timing and QoS management

provided by interfaces and underlying
infrastructure

• Provide interface for any type of simulation
on demand

• “Virtual Things”
• Uses :

• Virtual Engineering
• V&V mixing real and virtual
• Model of reality or decision support

6

Workflow as a Service (WFaaS)
• Combine simulations together by defining interactions and shared data
• Hierarchical viewpoint allowing reuse of existing workflows
• Provide automated simulation integration via analysis of supplied simulation interfaces

and interactions
• Combine simulations with data stores and real-world devices
• Managed execution of co-simulation:

• Scheduling & distributing simulations
• Migration of live simulations
• Management of QoS

A B

EA1 D

Sub-Workflow

7

Through life-cycle agility
• Support mixing simulation and reality via IoT
• Simulation use throughout life-cycle

• Rapid reaction to requirements change / security issues

8

Agile Systems Engineering
Key Requirements:

• Rapid and reliable integration of simulations
• Mapping between system design (architecture and interactions) and simulations
• Variable fidelity of simulation
• Ready connection to physical and virtual components

Potential benefits:
• Rapid design iteration
• Easy sharing of design state among engineers
• Prototype at all stages of development mixing between maturity levels
• 3rd party suppliers providing prospective models (Behavioural contracts)
• Traverse system abstraction layers exploring behaviour
• Rapidly respond to changes in requirements

9

Simulation Integration
• Complex systems require multi-disciplinary

simulation
• Heterogeneous development and execution

environments
• Integration environments

• Simulink, SimWorkbench, Modellica, Simware

Social Problems:
• Lack of documentation
• Lack of centralised repositories
• Is my model up to date?
• Do I have the required Tool?

1. Collect suitable models and documentation

2. Check compatibility of models
• Signals

• Representations, Internal constants

• Time steps

3. Connect models
• Connect signals

• Transformation functions

4. Validation and Verification
• Existing test data

• Engineer intuition

• Correctness of representation

Typical Integration Process

10

Communication & Transport
Data Distribution Service (DDS)

• OMG standard for communication
• Publish-Subscribe model
• Inherent QoS

Web-Services (WS-*)
• Collection of supporting standards already widely used in Cloud

Asynchronous Message Queues
• Kafka, Rabbit MQ, ØMQ
• Common in Software as a Service (SaaS) applications
• Supports web standards and protocols

11

Composition and Orchestration
Process Workflows

• Multiple existing languages for specification: YAWL, BPMN, BPEL
• Defines the flow of execution between services
• Well understood

• Many patterns defined by Russell et al. (www.workflowpatterns.com)

Simulation Workflows
• Data-flow common in languages such as Simulink and Labview

• System interactions or component simulations are not necessarily representable as feedforward
functions

• Inherently parallel, co-simulation is required across workflow
• Control time steps and synchronisation of workflow
• Mapping between system design and simulations

• Simulation interactions imply system interactions

12

Simulation Compatibility
Tool Compatibility

• Standards compliance
• Modes of operation:

• Master / slave
• Interactive / Non-interactive

• API availability

Simulation Definitions
• Incompatible constants: causes unpredictable

behaviours, not always immediately recognised
• Incompatible signals or representations:

Require transformation functions
• Differing units or scale: Requires a

transformation

Validation and Verification: does the integrated
model make sense?

Model fidelityData sharing
infrastructure

Incompatible
interfaces

Data types
Timing
requirements

Model
complexity

Tool
incompatibility

Engineering Time

CoSimulation
Infrastructure

13

Simulation Boundary and Causality
System/component boundaries are less obvious when co-simulating an actual system

• A component may have multiple simulations on different aspects
• Redundancies and inconsistency in boundaries must be removed/managed
• Support needed for collaboration between various domain experts

• Iterative approach for co-simulation requires a robust definition of component-level interfaces, especially when components with
different levels of fidelity

Guaranteeing causal consistency is a major challenge in a distributed environment
• A component simulation may rely on signals generated externally to it’s solver
• Without a global solver external signals will be delayed by at least a timestep
• Understanding causality requires tracing provenance of values through simulations
• Simulations must be designed with causality in mind

Synchronisation of co-simulation
• Most co-simulations are either strictly, optimistically, or weakly synchronised with the performance decreasing as the level of

synchronisation decreases. Conversely as synchronisation is reduced the results of the simulation can no longer be guaranteed to
the same degree

14

Coupling
Typical approaches to coupling of simulations

• Code-based, typically defined in C or C++ uses one of the available APIs
• Graphical using a workflow/flowchart/circuit design style

Manual integration always required
• By writing code or wiring up a diagram

- prone to errors
• Complexity of models

- with 100s to 1000s of interaction points

Example (with only a few interactions)
• “SignalConditioning”
• to handle the challenge of incompatible signals
• Harder coupling when “Pedal” labelled as “Throttle”

15

Continuous Co-Simulation
Continuous time vs discrete time

• Algebraic using ODEs

Continuous simulations
• “initial value” – using a numerical ODE solution
• “algebraic loops”

- where a signal loop exists with only direct feedthrough within the loop”
i.e. the output depends on the value of the input which depends on the value of the output

Challenges: when using solvers for these problems
• e.g. lack of stability as the solutions fluctuate/oscillate around the actual value
• Current solutions: keep the entire simulation within a single tool, and then be able to use ODE solvers such

as Runge-Kutta methods, which doesn't scale
• Or one must be able to iterate over the co-simulation, which most tools don't support

16

Differing Time-Step Integration
Individual simulations have differing representations of time

• Logical time - the time being modelled by the simulation. Higher fidelity simulations will tend to model
shorter period of logical time

• Execution time - the time taken for the simulation to run or perform a logical time step
e.g. a simulation may take 30s to run a simulation modelling 1s or conversely take 1s to run a simulation
modelling 30s

Integration of individual concepts of time in different simulations
• Requiring a mixture of extrapolation and interpolation
• Current solutions (zero & first-order holds) may result in instantaneous value changes

when the next value is observed and is different than the predicted value
• Current solutions require the engineers to understand the issues of timing integration

and manually apply their domain expertise

17

Case Studies: Automotive Industry
Design & Development

• Design offices readily share models
and iterate on current designs

• Rapid Prototyping
• OEM models, 3rd Party Sims

Manufacture
• Digital twin factory and supply lines

Operation and Maintenance
• Data from other vehicles
• Integrate with local government

models and systems

18

Case Studies: Automotive Development

Low

Medium

High

19

Case Studies: Driving Simulator

Throttle

Brake

Engine Vehicle
Dynamics

TCU

Transmission

Micro-Service

Service

Leeds Driving Simulator

20

Case Studies: CITIUS
Research new technologies to command, control and interoperate autonomous vehicles in
military operations.

21

Case Studies: Power & Thermodynamics of
Data Centres

22

Conclusions and Next Steps
• Growing need for integration of simulation
• We already do this, lets do it better!
• Internet of Simulation, a possible solution but:

• Need increased support from standards and vendors
• Design simulations with reuse in mind

• Agile Systems Engineering
• Example case studies

23

Questions
Contact:
Dr. Stephen J. Clement, University of Leeds, Leeds, UK
S.J.Clement@leeds.ac.uk

24

	The Internet of Simulation: Enabling Agile Model Based Systems Engineering for Cyber-Physical Systems
	Background
	Motivation
	Existing Co-Simulation Standards
	Internet of simulation (IoS)
	Simulation as a Service (SIMaaS)
	Workflow as a Service (WFaaS)
	Through life-cycle agility
	Agile Systems Engineering
	Simulation Integration
	Communication & Transport
	Composition and Orchestration
	Simulation Compatibility
	Simulation Boundary and Causality
	Coupling
	Continuous Co-Simulation
	Differing Time-Step Integration
	Case Studies: Automotive Industry
	Case Studies: Automotive Development
	Case Studies: Driving Simulator
	Case Studies: CITIUS
	Case Studies: Power & Thermodynamics of Data Centres
	Conclusions and Next Steps
	Questions

