

Integration of an In-Vehicle Network Utilizing VICTORY Standards on a USMC MRAP-All Terrain Vehicle (M-ATV)

Mr. Ernest Sanchez ernest.sanchez1@usmc.mil USMC – PEO Land Systems 21 March 2017

Why Open Systems?

Commercial product lifetimes are much shorter and more volatile than the weapons systems they support (i.e. years vs. decades). Acquisition managers take a **risk** to rely on unique products provided by a single supplier at high noncompetitive prices and with little opportunity for technology insertion by other suppliers.

Potential benefits of using open systems:

- Reduced cycle time
- Reduced life cycle costs
- Enabling interoperability
- Technology insertion
- Increased competition
- Better performance

(Defense Acquisition University: CLE013 – Modular Open Systems Architecture for DoD Acquisition)

What is VICTORY?

- Vehicular Integration of C4ISR/EW InTerOpeRabilitY (VICTORY)
- VICTORY is a set of open standards developed by a government-industry partnership.
- VICTORY leverages government and commercial standards to define interfaces and component types, which enable interoperability among the automotive, C4ISR/EW, and network components.
 - VICTORY Standard Specifications Version 1.6.2, March 31, 2015
 - www.victory-standards.org
- A VICTORY-compliant In-Vehicle Network (IVN) uses hardware and software component types which can be tested using the VICTORY Compliance Test Tool software suite.

IVN hardware typically includes:

- A Shared Processing Unit (SPU) to host the shared services (Apps) and data, and enable adding future capabilities by adding software.
- An Ethernet Switch, connected to the SPU and IVN hardware components (radios, jammer, sensors, etc.).
- Interactive Multi-Function Display Unit(s), replacing one or more single-use displays.

Policy and Requirements

USMC

- Systems Engineering, Interoperability, Architectures, and Technology (SIAT) Memo, 18 Jul 2014
- Standardizing System Integration On Marine Corps Vehicles Utilizing VICTORY Standards
 - "VICTORY is the recommended standard for C4ISR/EW vehicle integration."
 - "Shall be considered for implementation by MCSC and PEO LS managed programs as part of system upgrades, modernization, and new development."
- PEO Land Systems (LS) Policy 2-14, 22 Dec 2014
- Implementation of VICTORY Standards
 - ' PMs within PEO LS will:
 - Develop an appropriate strategy for implementing VICTORY considering existing architecture, planned upgrades and available resources; anticipate incremental approach for legacy vehicles.
 - Incorporate appropriate VICTORY compliant language in the RFP for new start vehicle programs.
 - Provide update of their VICTORY implementation plan during PMRs.
 - Appoint a POC for VICTORY implementation in your PMO.

- Management Directive, signed 30 January 2012, forming a partnership of PEO GCS, CSS&CS, C3T, IEW&S and CG RDECOM to direct VICTORY effort including implementation within assigned systems
 - Prioritize standard development
 - Synchronize equipment implementation

PEO GCS ADM to implement VICTORY as part of Abrams, Bradley and Stryker ECPs

- Briefed to and supported by Army Acquisition Executive on 16 August 2012
- VSSO Compliance Verification Strategy approved by VICTORY ESG on 19 March 2013
- Four ESG PEO issued policies for implementation and developed VICTORY implementation plans

ASA(ALT) and four ESG PEOs are synchronizing implementation plans across PEOs

- The In-vehicle network (IVN) was demonstrated to be compatible with the existing C4ISR/EW and automotive systems in the currently fielded M-ATV configuration
 - 1. Voice radio #1
 - 2. Voice radio #2
 - 3. Voice radios #3 & #4
 - 4. GPS Receiver
 - 5. Counter Radio-Controlled Improvised Explosive Device (RCIED) Electronic Warfare (CREW) system
 - 6. Blue Force Tracker (virtualized)
 - 7. SAE-J1939 vehicle CAN Bus

VICTORY Demo Implementation

(Early design pictured)

M-ATV Demonstration System

- Replaced BFT processor by hosting software on the SPU
- Multiple components accessible via a multi-function display
- Enable centralized remote control of radios and CREW system

Engineering Approach

♦ System Functional Review (SFR):

- Engaged USMC operating forces from multiple Military Occupational Specialty (MOS) groups to prioritize functions and capabilities for the In-Vehicle-Network (IVN).
- Performed Functional Decomposition to break down user and performance requirements to reflect the corresponding operational and maintenance tasks.
- A Functional Baseline was constructed, focused on functions which were High and Medium priority.
- Included IVN, C4ISR, Electronic Warfare (EW), and automotive (J1939 CAN-bus) systems.

♦ Physical Architecture (SV-1):

Developed physical architecture identifying necessary components, cabling, adapters, and interfaces.

Preliminary Design Review (PDR):

- Virtual Hardware Integration performed using CAD Solid models.
- Strategy created for software development and software reuse.
- Risks identified and assessed with mitigation plans implemented.
- Planned for incremental software testing of services and plug-ins.

Critical Design Review (CDR):

- Final hardware design in place.
- Initial operational software developed.
- Updated risk assessment with mitigation plans implemented.

✤Pilot Test

Operated the demonstration IVN system installed on a USMC M-ATV for testers and Marine users.

PM MRAP worked with:

- VICTORY Standards Support Office (VSSO),
- Southwest Research Institute (SwRI),
- Space and Naval Warfare Systèms Command (SPAWAR) Atlantic, and
- Agile Cómmunications, Inc.

to develop a functioning in-vehicle network (IVN) prototype utilizing VICTORY standards for the M-ATV. Integration consisted of software development and hardware integration onto a USMC M-ATV with a goal to have a functioning prototype within 12 months.

Actual Schedule:

- USMC MRAP VICTORY Kick-off 17 Sep 20
- Systems Functional Review (SFR)
- Preliminary Design Review (PDR)
- Critical Design Review (CDR)
- Pilot Test

- 17 Sep 201410 Dec 20144 Feb 201529 May 2015
- 14 Aug 2015

IVN Screen: Home Screen

IVN Screen: System Health

IVN Screen: Radios

IVN Screen: Details - Automotive

BFT

Ouad

IVN Benefits

Improve Size/Weight/Power/Cost (SWaP-C) considerations

Reduce the SWaP-C burden and improve ingress and egress

Enhance local situational awareness

 Can integrate video, diagnostics, warnings, & other data in vehicles and can enable sharing across units

Reduce users' operational burden

Automate manual and duplicative tasks

Realize cost conscious integration

- Integrate C4ISR, EW, and platform systems affordably with core IVN
- Multiple use hardware: "Plug and Play" versus typical "Bolt-On" integration
- Provides an Open Architecture
- Reuse of software components across multiple platforms

Reduce the Logistics footprint

 Significantly reduce costs of logistics operations by enabling condition-based maintenance (CBM), and automating configuration management and & health management tasks

Reduce test and training costs

- Improves the availability of information to support test and training operations
- Reduces costs and time necessary to integrate test and training systems with vehicles

System requirements:

- Start by clarifying requirements with user community.
- Scale IVN (more/less complex) to reflect program priorities and requirements.
- Maintain room for future growth.

Integration:

- Perform high fidelity bench integration before starting vehicle integration.
- Procure production grade equipment for development and testing.
- Install components with consideration given to ease of access and maintenance.

Network & software expertise is critical.

Information Assurance & Cybersecurity are required for fielding.

NIST Risk Management Framework

*****User Comments:

- Menu was easy to navigate.
- Concern over introducing a single point of failure or additional vulnerability.

Conclusions

*For programs considering a new VICTORY IVN acquisition:

- Focus on priorities of your program, and scale the system accordingly:
 - Interoperability of systems.
 - > Data logger for condition based maintenance (CBM).
 - Increased situational awareness.
- Information assurance and cybersecurity are requirements for production systems.
- Consider Human Systems Integration (HSI) when placing hardware components in the vehicle and when creating GUI menus.
- Plan and resource for User Interface and Adapter development.
- Engage the original equipment manufacturers for C4ISR/EW and networked systems.
- Perform frequent incremental testing.
- Perform formal configuration management of the software code.
- Consider creating redundant systems & hardware.
- Use the expertise of the VSSO working groups. (www.victory-standards.org)

