



# Achieving MBSE Benefits amidst Multiple Government Program Office System of System Challenges







John Tyreman – Lockheed Martin Undersea Systems

George Saroch - PMS 420 SEIT PAPM

Rich Byers - Naval Surface Warfare Center, Panama Clty

LOCKHEED MARTIN

LCS Mission Modules Systems Engineering & Integration

1



### Agenda/Objective



- LCS Mission Module Challenges
- Submarine and LCS synergy
- Come as you are benefit/challenge
- LCS Model based SoS SE&I approach summary
- Interface model SoS analysis schema
- Data concordance analysis capabilities
- Model benefits
- Conclusion





### LCS Mission Modules Challenge: Sheer Complexity



LCS Mission Capabilities

Multiple Mission Page



**∡es** 

Remote Minehunting Mission Modul



Mine Countermeasures Mission Package
Multiple Mission Modules & Multiple Increments



RMH Mission Systems

Multiple Development Organizations

| System               | PM      | OEM                |
|----------------------|---------|--------------------|
| RMS                  | PMS 420 | LM                 |
| Ships LH&R           | PMS 501 | LM (FRE), GD (IND) |
| Mission Bay Stations | PMS 501 | LM (FRE), GD (IND) |
| MVCS                 | PMS 420 | NSWC-PCD           |
| Ship C2              | IWS-8   | LM (FRE), GD (IND) |
| Mission Package C2   | PMS 420 | NSWC-PCD           |
| MCM Analysis         | PMS 495 | SAIC, NSWC-PCD     |

LCS mission modules have both system- and organizational-complexity which results in formidable integration challenges





### LCS MP Model Based SoS SE Analysis

**History & Submarine Reuse** 

LCS Mission Modules

Systems Engineering & Integration



Significant Submarine Methodology and Tool benefits to LCS





### LCS Mission Modules Challenge: Come-As-You-Are Reuse



| "Come as you are" attribute                                                                                            | Result                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Capability is already developed and tested on another platform, theoretically being reused for "Pennies on the dollar" | Generally, core capability IS available on the cheap, but integration with the platform and adjacent systems quickly eats into the savings                                     |
| Interface requirements are individually developed and tested by each "comeas-you-are" mission system developer         | Key interface functions are designed out of sync and while initial individual system development costs are less, SoS integration costs can be very high                        |
| Mission level operational specifications are not reflected coherently in the interface requirements                    | Each system has gaps and inconsistent requirements relative to the mission level specs, and as a result, mission level performance is unpredictable and KPPs are often not met |

The "come-as-you-are" (low-cost-capability) benefit does not have to come at a high platform integration cost → <u>A better approach is needed</u>





## **SoS MBSE Integration Methodology MBSE Interface Model Architecture / Process**





- Stakeholder developed requirements
- Structured entry into model
- Jointly reviewed model products



SoS MBSE Integration Methodology starts with a collaborative framework to develop solid interface requirements and ends with SoS thinking amongst all participants





## PMS 420 MBSE Landscape SE Hierarchy / Engineering Model Overview

LCS Mission Modules

Systems Engineering & Integration

### SOS Mapping to DODAF/SYSML Views



SoS MBSE Interface Model manages the complex system information in a structured manner





## LCS SoS Interface Model Multiple Level (Nested) Interface Definitions





Structured and Regimented Nesting of Architecture and Interface Decomposition



## Synchronized Interface/Requirements Decomposition Example





Model Schema synchronizes and structures the decomposition of architecture, interfaces, and Interface Requirements





### **LCS SoS MBSE End to End Analysis**





- **HWCI Only** ANSI and
- custom interfaces

- **CSCI Only**
- **SW** Hosting
- Basis to manage OS Environment

#### **Network View**

- **HWCI Only**
- **Network Topology**
- Network standards
- Throughput "choke point" analysis

Interface model provides an end-to-end viewpoint in the data, electrical and mechanical domains to engage the appropriate SME discipline.





## MP ICD Content: Operational Analysis Artifacts









## **System of Systems**Thread Integration Maturity



### Operational/System Architecture and Interface Requirements



| Requirement Text                          | Realized<br>By | Used By |            | Ver<br>Metho<br>d | Pri  | LM<br>Test |     | Planne<br>d Test |
|-------------------------------------------|----------------|---------|------------|-------------------|------|------------|-----|------------------|
| The RMMV Control Subsystem and MVCS       |                |         |            |                   |      |            |     |                  |
| Host Subsystem shall exchange vehicle     |                |         | Automatic  |                   |      |            |     |                  |
| navigation data to support MVCS automatic | RMMV           | MVCS    | Link       |                   | 1 -  |            |     |                  |
| link management.                          | Control        | Host    | Switching  | Test              | High | No         | No  | None             |
| Once the RMMV power has been turned off,  |                |         |            |                   |      |            |     |                  |
| the RMMV Subsystem shall alert the MVCS   |                |         |            |                   |      |            |     |                  |
| Remote Subsystem and provide seconds      |                |         |            |                   |      |            |     |                  |
| for a graceful shutdown of MVCS Remote    |                | MVCS    | Power      |                   | 2 -  |            |     |                  |
| processing equipment.                     | RMMV           | Remote  | Management | Test              | Med  | Yes        | No  | Yes              |
| The RMMV/MVCS Host subsystem interface    |                |         |            |                   |      |            |     |                  |
| shall provide a minimum data link         |                |         |            |                   |      |            |     | Į                |
| throughput of Mbits/second per vehicle    |                |         |            |                   | _    |            |     |                  |
| for transmission of data from the RMMV to |                | MVCS    |            |                   | 1 -  |            |     |                  |
| the LCS in LOS communications mode.       | RMMV           | Host    | Throughput | Test              | High | No         | Yes | / /              |



### Legend:

#### **Tested Requirements**

- Tested by any of following:
- RMS/LM Val/Ver testing
- MVCS/PCD Throughput testing
- MVCS/PCD SRS testing
- RMS/LM Integration testing

#### **Untested Requirements**

- **High:** Requirements failure results in Pri 1 or 2 SPR
- **Med:** Requirements failure results in Pri 3 SPR
- **Low**: Requirements failure results in pri 4 or 5 SPR

#### **Enhanced Interface RVM**

- Interface requirements with Verification method and Priority
- Test conduct survey from constituent subsystems
- Mission Module thread functional test case organization

### **SoS Thread Integration Maturity Model**

- Mission Module thread functional test case organized
- Compiled survey of prioritized interface requirements test voids

Structured SoS Thread Integration Maturity model provides a means to objectively and thoroughly plan platform integration





## MBSE Thread Integration Maturity Support



### Automated *Thread level* Interface-RVM status



## Thread level Thread Integration Maturity

PRE-PLATFORM per thread Risk Mitigation

Predictable per thread Platform Performance









## LCS SoS MBSE Integration Methodology RMH Benefit / ROI



| SoS MBSE<br>Activity                                       | Approach                                                                                                                                                        | Benefit / Result                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Maximize RMH<br>Q20 Sensor<br>Thread<br>Performance     | Defined the RMH sensor thread architecture, end-to-end performance requirements for the Q20-B sensor information movement/processing.                           | <ul> <li>Technical: Established initial NSAM performance<br/>requirements for Q20B sensor</li> <li>Technical: Developed RMH sensor thread end-to-end<br/>architecture to maximize TPM adherance</li> </ul>                                                                                        |
| 2. Define RMH MM<br>Orphaned<br>Hardware                   | Developed PMS 420/403 "Orphan MOA" which adjudicated technical (spec) and programmatic (\$\$) ownership with 420/501/503/495 for 41 configuration items         | <ul> <li>Cost/Schedule: Avoided cost and schedule churn 41 tactically required configuration items</li> <li>Defined full set of capability required to transition the RMH MM to production</li> </ul>                                                                                             |
| 3. Mitigate RMH<br>Comms (RMS /<br>MVCS) Interface<br>Risk | Generated MVCS/RMS interface requirements verification matrix (I-RVM) identifying 62 high-priority interface requirements which had not been adequately tested. | <ul> <li>Cost/Schedule: Drove RMS/MVCS integration problems to<br/>be found and fixed much earlier in the lifecycle</li> <li>Risk Mgt: Provided objective information manage IOT&amp;E<br/>integration risk</li> </ul>                                                                            |
| 4. Mitigated RMH on FRE interface risk                     | Developed performance-requirements based approach to buy-down RMH on FRE risk well ahead of on-platform timeframe                                               | <ul> <li>Risk Mgt: Mitigation plans developed for 4 high priority and 5 medium priority MCM on FRE risks</li> <li>Risk Mgt: Options developed for wake flow-field analysis to benefit multiple UxV L&amp;R</li> <li>Risk Mgt: Options developed for seaframe information exchange risk</li> </ul> |

Model and Methodology investment recouped .. And counting





### SoS MBSE ROI Foundation





Note¹: Source:NIST Planning report 02-3, The Economic Impacts of Inadequate Infrastructure for Software Testing, May 2002.

D. Galin, Software Quality Assurance: From Theory to Implementation, Pearson/Addison-Wesley (2004) B.W. Boehm, Software Engineering Economics, Prentice Hall (1981)

SoS MBSE Integration Methodology enables Rapid Capability Insertion





## LCS SoS MBSE Integration Methodology Conclusion / Takeaway



- Enables the "come-as-you-are" approach to be rapidly acquiring capability from other Navy programs
- Has been proven with the RMH MM pilot to avoid costs and manage risks at the mission module / platform integration level
- Scales to multiple mission modules and multiple platforms
- Enables all stakeholders to manage their own systems and their own role in mission module / platform integration to cohesively satisfy the LCS fleet and sponsor

The Glue for the LCS MP Engineering Enterprise





# For further questions on this topic, contact John at john.tyreman@Imco.com