Newcastle
+ University

Architectural Modelling Patterns
for Systems of Systems

Claire Ingram, Richard Payne, Johnss
Fitzgerald

Newcastle
+ University

Outline

1. Context: SOSs and the COMPASS project
2. Architectural challenges for SoSs

— What is an architecture?

— What is a pattern?

3. Modelling patterns for SoSs

— Architectural patterns

4. Future work

Newcastle
Q) niversity

Systems of Systems (SoSs)

s 4
9 __ = S0oSs are comprised of elements
— - that are themselves independent

ﬁ systems

Ao/ Video (Bas & Olufsen] = Often exhibit:
Independent networks, devices, content ¢ Operational & managerial
services. Ensure a consistent “SoS experience” independence
Emergency Response (Insiel) * Distribution
o Independent services, seen as one system by * Emergence
“and user”. i EVOIUUO”

= Challenging aspects include:

e Operational & Managerial
Independence of Constituent
Systems

e Complexity of confirming/refuting
SoS-level properties

 Semantic heterogeneity

Newcastle
Q) vniversity

COCMPASS

www.thecompassclub.org e

Newcastle
University

COCMPASS

www.thecompassclub.org e

‘aul Acivation View» fausOfinterest = Complete Faiure ofthe Radio Syste)]
Iitiae Rescue Faul Acivation [Faut 1]

CC: Cal Centre. Ragio System ERUL:ERU

Architectural Modelling
* SoS Modelling Frameworks

e ... instantiated to domains

* SoS Modelling patterns &
profiles, e.g. Fault-Error-Failure
 Guidelines on negotiation,
requirements, integration, test,
etc.

Newcastle

C CJ I\/I P A S S Q) vniversity

www.thecompassclub.org e

T i) process CallCentreProc = begin
CC: Call Centre Radio System ERUL: ERU actions
MERGEL(r) =
(dcl e: set of ERUId @ e := findldleERUs();
«:ﬁ:;\cm;m (dO e= {} -> DEC|S|ON2(I‘) |

e<>{}-> (dclel: ERUId @

‘ | i el := allocateldleERU(g, r);
. MERGE2(e1, r))
b == e
I b process InitiateRescue =
«sxanRemvery»> -«EndRecovery» ca"centreproc [l SEND_CHANNELS |]
— RadioSystemProc [| RCV_CHANNELS |] ERUsProc
Architectural Modelling Underpinning Formalisms
* SoS Modelling Frameworks * Behavioural semantics of SoS
e ... instantiated to domains * Tight link to modelling frameworks
* SoS Modelling patterns & * Cope with multiple paradigms.
profiles, e.g. Fault-Error-Failure * Compositional Design
* Guidelines on negotiation, * Dynamic response to adaptation &
requirements, integration, test, evolution
etc. * Covering cyber elements, physical,

human, economic, social, ...

COCMPASS

www.thecompassclub.org

‘ault Actvation View (fausOfinterest = Complte Failure ofth Radio Syste}]
Initiate Rescue Fautt Activation [Fautt 1)

CC: Call Centre

Radio System

ERUL:ERU

«Error Detection»
Error 1 detection| [Drop message}

«Start Rec
: Start Recovery 1

overy»

Architectural Modelling
* SoS Modelling Frameworks

e ... instantiated to domains

* SoS Modelling patterns &
profiles, e.g. Fault-Error-Failure
 Guidelines on negotiation,
requirements, integration, test,

etc.

I}

process CallCentreProc = begin
actions
MERGE1(r) =
(dcl e: set of ERUId @ e := findldleERUs();
(do e ={} -> DECISION2(r) |
e<>{}-> (dclel: ERUId @
el := allocateldleERU(e, r);
MERGE2(el, r))
end)) ...

process InitiateRescue =
CallCentreProc [| SEND_CHANNELS |]
RadioSystemProc [| RCV_CHANNELS |] ERUsProc

Underpinning Formalisms

* Behavioural semantics of SoS

* Tight link to modelling frameworks
* Cope with multiple paradigms.

* Compositional Design

* Dynamic response to adaptation &
evolution

* Covering cyber elements, physical,
human, economic, social, ...

Newcastle
Q) niversity

o A |

R —

0 al’ego Vodeler’

|l
oy

Tool-supported V&V:

* Exploration of Design Space

e Efficient verification by model-
checking and proof

* Test generation

e Simulation

* Tools Robustness

* Conformance during evolution,
and emergence

COCMPASS

www.thecompassclub.org

Newcastle
University

‘aul Acivation View» fausOfinterest = Complete Faiure ofthe Radio Syste)]
Iitiae Rescue Faul Acivation [Faut 1]

CC: Cal Centre. Ragio System ERUL:ERU

process CallCentreProc = begin
actions
MERGE1(r) =
(dcl e: set of ERUId @ e := findldleERUs();
(do e ={} -> DECISION2(r) |
e<>{}-> (dclel: ERUId @

el := allocateldleERU(e, r); |

MERGE2(el, r))
end)) ...

process InitiateRescue =

e e

«&nd Recovery»
End Recovery 1

’\ﬂ al’ego Miodeler’

I I RAUIUJYSLEIMIFTUL [| RUV_UMANNLCLY || ERUSFTUL

I I V |

Architectural Modelling
* SoS Modelling Frameworks

e ... instantiated to domains

* SoS Modelling patterns &
profiles, e.g. Fault-Error-Failure
 Guidelines on negotiation,
requirements, integration, test,
etc.

Underpinning Formalisms

* Behavioural semantics of SoS

* Tight link to modelling frameworks
* Cope with multiple paradigms.

* Compositional Design

* Dynamic response to adaptation &
evolution

* Covering cyber elements, physical,

human, economic, social, ...

Tool-supported V&V:

* Exploration of Design Space

* Efficient verification by model-
checking and proof

* Test generation

e Simulation

* Tools Robustness

* Conformance during evolution,

and emergence

Newcastle
Q) vniversity

COCMPASS

www.thecompassclub.org e

T i) process CallCentreProc = begin
CC: Call Centre Ratio System ERUL:ERU actions
MERGE1(r) =
(dcl e: set of ERUId @ e := findldleERUs();
(do e = {} -> DECISION2(r) | -
e<>{}-> (dclel: ERUId @ : _J|
el := allocateldleERU(g, r); F
S— - MERGE2(e1, r)) .
ke Gy end)) ...
I ¢ process InitiateRescue = — 2=
- - €3 afegoModeler
Y Y ﬂdulU)Ych"ll’lUL [| I'\\.,V_L,I'IHI‘II‘]EL.) |] CRUSFIuUC T T : PEET
Architectural Modelling Underpinning Formalisms Tool-supported V&V:
* SoS Modelling Frameworks e Behavioural semantics of SoS * Exploration of Design Space
fiStantiated to domains * Tight link to modelling frameworks * Efficient verification by model-
* SoS Modelling patterns & * Cope with multiple paradigms. checking and proof
iles, e.g. Fault-Error-Failur * Compositional Design * Test generation
e Guidelineson * Dynamic response to adaptation & e Simulation
requirements, integration, test, evolution * Tools Robustness
etc. * Covering cyber elements, physical, * Conformance during evolution,
human, economic, social, ... and emergence

Newcastle
+ University

Outline

1. Context: SOSs and the COMPASS project
2. Architectural challenges for SoSs

— What is an architecture?
— What is a pattern?

3. Modelling patterns for SoSs

— Architectural patterns

4. Future work

10

Newcastle
+ University

What is an architecture?

An architectural design may address:

e System structure: major components of the system,
their organisation and structure.

e System behaviour: “dynamic response of the system
to events, providing a basis for reasoning about the
system.”

e System layout: physical layout & packaging of the
system. Stevens et al. 1998

11

Newcastle
+ University

SoS Architectural Challenges

e Lack of full disclosure between CSs
e Accurately predicting emergent behaviours
* Long lifecycles, legacy or COTS components

e Constituent systems (CSs) evolve with/without the
SoS

e Lack of central decision-making authority
e Multi-disciplinary, cross-domain

 High requirement for availability, a volatile operating
environment

12

Newcastle
+ University

SoS Architectural Consideration

These prompt questions such as:
— How far do we need to control propagated changes?

— What is the required level of assurance of emergent
behaviour?

— |s there a central decision-making authority?

— To what extent do we want separate concerns?

— How important is resilience or adaptability?

— Do we need a clear, traceable chain of command?

We need:
— a basis for comparing alternative SoS architectures
— a means of sharing and passing on experience

13

Newcastle
+ University

What is a ‘pattern’

“A pattern describes a problem which occurs over and over again
in our environment, and then describes the core of the solution
to that problem, in such a way that you can use this solution a
million times over, without ever doing it the same way twice”

131 THE FLOW THROUGH 220 ROOF VAULTS*
61 SMALL PUBLIC SQUAREg RooMs

Towns ‘Buildings - Construction

A Pattern Language ‘

Christopher Alexander
Sara Ishikawa - Murray Silverstein

Max Jacobson - Ingrid Fiksdahl-King
Shlomo Angel

Alexander et al., 1977

14

Newcastle
+ University

Outline

1. Context: SOSs and the COMPASS project
2. Architectural challenges for SoSs

— What is an architecture?

— What is a pattern?

3. Modelling patterns for SoSs

— Architectural patterns

4. Future work

15

Newcastle
+ University

Patterns for SoS Models

We use modelling pattern to mean a pattern that can be
applied to modelling aspects of a system, such as
architecture or interfaces

Developing a catalogue of patterns can:

e Facilitate sharing lessons between SoS domains

— Which SoS challenges does a pattern cope well with or cope
badly with?

e Help us learn more about SoS contexts and constraints

— How and why does a particular pattern arise?

— How does an architecture or control structure affect SoS
performance?

16

Newcastle
Q) vniversity

Patterns for SoS Models

e Patterns observed in or inspired 'E/tb—
&z -
by COMPASS SoSs:

— Centralised

— Service-oriented
— Publish-subscribe
— Pipe & Filter

— Supply Chain

— Reconfigurable Control ”ﬁﬁ(& [ET- 1
— Infrastructure Grid P LA N
— Blackboard

Newcastle
Q) niversity

Patterns for SoS Models

e Patterns observed in or inspired ﬁE/’_!
by COMPASS SoSs: '

— Centralised

— Service-oriented
— Publish-subscribe
— Pipe & Filter

— Supply Chain

— Reconfigurable Control ... ﬁ“gjj[‘%f
— Infrastructure Grid e e (9
— Blackboard

Newcastle
+ University

Centralised

e Central point of control

e “Hub” connected to other CSs, responsible for
delivering SoS behaviour

 Hub typically developed specifically for SoS
e Some CSs may be legacy/COTS, or purpose-built

e May or may not force all CSs to communicate through
the hub(s)
e Subtypes:
— Fully centralised
— Distributed-centralised
— Hierarchical-centralised

19

Newcastle
+ University

Centralised

SoS considerations
e Centralised control/management

e Can track and/or log where decisions are
made

* Re-use existing systems

e |f CSs communicate only through the hub, SoS
can become loosely coupled

* Permits verification in early design stages

20

Newcastle
+ University

Reconfigurable Control

e Pattern to facilitate dynamic reconfiguration

 Dynamic reconfiguration requires some provisions:
— CS functionality and (optionally) QoS must be specified
— Alternatives are available for these functions
— SoS can monitor current performance

e Metadata used to describe the functions CS offer

e A policy details when and how to reconfigure SoS
— Lists necessary functions and minimum performance for each
— Lists conditions under which action taken
— Can provide prioritisation
e Explicit reconfiguration control CS can monitor CS
functionality & performance to decide on actions

21

Newcastle
Q) Lniversity

Reconfigurable Control

Subtypes:

Centralised Decentralised

Controller Policy Controller, | Policy

|—:{,— cs,

cs, © cs
& CS, = :
—— CS, ®

Controller, | FolcYz|

22

Newcastle
+ University

Reconfigurable Control

SoS considerations:

 Dynamic reconfiguration helps to provide
resilience

e Performance optimisation facilitated
e Allows for central authority

e Should be partnered with a loosely-coupled
architecture

23

Newcastle
Q) niversity

Pipe & Filter

24

Newcastle
Q) niversity

Pipe & Filter

Filter

25

2= Newcastle
Umversrcy

Pipe & Filter

g-g=

Filter

26

2= Newcastle
UmverSlty

Plpe & Filter

a > pe
g

Filter

27

Newcastle
+ University

Pipe & Filter

/—

Filter
e Data or materials processed from input form to output form
e Filters represent the processing steps

* Pipes represent connections between Filters

* Filters are independent, do not share state or know each other’s
identities

Garlan & Shaw 1996, Buschmann et al. 1996
SoS considerations

 Unsynchronised evolution is possible
 Dynamic reconfiguration is possible
 May or may not have central control

28

Newcastle
+ University

Supply Cham

29

Newcastle
Q) niversity

Supply Chain

Logistics
h
Integrator Supp”er

30

Newcastle
+ University

Supply Chain

S Logistics
N

Integrator Supp”er
A specialised pipe-and-filter
e Suppliers/integrators are the “filters”
e Logistics acts as a “pipe”
Differences with pipe-and-filter:
e Logistics shares internal state and participate actively
 (CSs may be aware of the final goal
e (Ss may be aware of internal status of their peers

e (Ss are also capable of generating input to be returned
upstream

31

Newcastle
+ University

Infrastructure Grid

e Delivers critical civil infrastructure, e.g., power, water,
roads, communications, etc.

 Divided into fixed geographical regions, each operated by
an autonomous controller

 (Ss exchange flows with direct neighbours, and data with
any other CS

e Optional central authority; regulations impose
standardisation

 May optionally be a hub for communications

32

Newcastle
+ University

Infrastructure Grid

r Ll
(L
TeLN

{

e Delivers critical civil infrastructure, e.g., power, water,
roads, communications, etc.

 Divided into fixed geographical regions, each operated by
an autonomous controller

 (Ss exchange flows with direct neighbours, and data with
any other CS

e Optional central authority; regulations impose
standardisation

 May optionally be a hub for communications

33

Newcastle
+ University

Infrastructure Grid
Differences from pipe-and-filter:

e (CSs know identity of neighbours

e The flow may be bi-directional

* (CSs may share details of internal state

Subtypes:

* Fully decentralised: no organisation with overall control

e Partially decentralised: one organisation controls an
important proportion of infrastructure

e Data-centralised: no overall authority, but there is a
central hub for data sharing

34

Newcastle
+ University

Outline

1. Context: SOSs and the COMPASS project
2. Architectural challenges for SoSs

— What is an architecture?

— What is a pattern?

3. Modelling patterns for SoSs

— Architectural patterns

4. Future work

35

Newcastle
+ University

Future Work

SoS Architectural Considerations:
e How far do we need to control propagated changes?

e What is the required level of assurance of emergent
behaviour?

e |sthere a central decision-making authority?
e How important is resilience or adaptability?
e Do we need a clear, traceable chain of command?
We need:
— a basis for comparing alternative SoS architectures
— a means of sharing and passing on experience

36

Newcastle
+ University

Future Work

 More patterns — develop a catalogue

e SoS problems and means for assessing
different SoS patterns against them

e Better understanding of how and why SoS
patterns arise/are applied

e Better understanding of weaknesses/risks of
each pattern

e Standardised approach for identifying,
collecting and documenting patterns

37

Newcastle
+ University

This work is part of the COMPASS project: research into model-based
techniques for developing, maintaining and analysing SoSs

Claire.Ingram@ncl.ac.uk %@ Claire_Ingram

CCMPASS

thecompassclub.org

38

	Architectural Modelling Patterns for Systems of Systems
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	What is an architecture?
	SoS Architectural Challenges
	SoS Architectural Considerations
	What is a ‘pattern’?
	Outline
	Patterns for SoS Models
	Patterns for SoS Models
	Patterns for SoS Models
	Centralised
	Centralised
	Reconfigurable Control
	Reconfigurable Control
	Reconfigurable Control
	Pipe & Filter
	Pipe & Filter
	Pipe & Filter
	Pipe & Filter
	Pipe & Filter
	Supply Chain
	Supply Chain
	Supply Chain
	Infrastructure Grid
	Infrastructure Grid
	Infrastructure Grid
	Slide Number 35
	Future Work
	Future Work
	Slide Number 38

