

Architectural Modelling Patterns for Systems of Systems

Claire Ingram, Richard Payne, John Fitzgerald Newcastle University, UK

Outline

- 1. Context: SOSs and the COMPASS project
- 2. Architectural challenges for SoSs
 - What is an architecture?
 - What is a pattern?
- 3. Modelling patterns for SoSs
 - Architectural patterns
- 4. Future work

Systems of Systems (SoSs)

Audio/Video (Bang & Olufsen)

Independent networks, devices, content services. Ensure a consistent "SoS experience"

Emergency Response (Insiel)

Independent services, seen as one system by "end user".

Ensure confidentiality, response times, etc?

- SoSs are comprised of elements that are themselves independent systems
- Often exhibit:
 - Operational & managerial independence
 - Distribution
 - Emergence
 - Evolution
- Challenging aspects include:
 - Operational & Managerial Independence of Constituent Systems
 - Complexity of confirming/refuting SoS-level properties
 - Semantic heterogeneity

www.thecompassclub.org

Architectural Modelling

- SoS Modelling Frameworks
- ... instantiated to domains
- SoS Modelling patterns & profiles, e.g. Fault-Error-Failure
- Guidelines on negotiation, requirements, integration, test, etc.

www.thecompassclub.org

Architectural Modelling

- SoS Modelling Frameworks
- ... instantiated to domains
- SoS Modelling patterns & profiles, e.g. Fault-Error-Failure
- Guidelines on negotiation, requirements, integration, test, etc.

Underpinning Formalisms

- Behavioural semantics of SoS
- Tight link to modelling frameworks
- Cope with multiple paradigms.
- Compositional Design
- Dynamic response to adaptation & evolution
- Covering cyber elements, physical, human, economic, social, ...

www.thecompassclub.org

Architectural Modelling

- SoS Modelling Frameworks
- ... instantiated to domains
- SoS Modelling patterns & profiles, e.g. Fault-Error-Failure
- Guidelines on negotiation, requirements, integration, test, etc.

Underpinning Formalisms

RadioSystemProc [| RCV CHANNELS |] ERUsProc

- Behavioural semantics of SoS
- Tight link to modelling frameworks
- Cope with multiple paradigms.
- Compositional Design
- Dynamic response to adaptation & evolution
- Covering cyber elements, physical, human, economic, social, ...

Tool-supported V&V:

- Exploration of Design Space
- Efficient verification by modelchecking and proof
- Test generation
- Simulation
- Tools Robustness
- Conformance during evolution, and emergence

www.thecompassclub.org

Architectural Modelling

- SoS Modelling Frameworks
- ... instantiated to domains
- SoS Modelling patterns & profiles, e.g. Fault-Error-Failure
- Guidelines on negotiation, requirements, integration, test, etc.

Underpinning Formalisms

- Behavioural semantics of SoS
- Tight link to modelling frameworks
- Cope with multiple paradigms.
- Compositional Design
- Dynamic response to adaptation & evolution
- Covering cyber elements, physical, human, economic, social, ...

Tool-supported V&V:

- Exploration of Design Space
- Efficient verification by modelchecking and proof
- Test generation
- Simulation
- Tools Robustness
- Conformance during evolution, and emergence

www.thecompassclub.org

Architectural Modelling

- SoS Modelling Frameworks
- instantiated to domains
- SoS Modelling patterns &
- profiles, e.g. Fault-Error-Failure
- Guidelines on negotiation, requirements, integration, test, etc.

Underpinning Formalisms

- Behavioural semantics of SoS
- Tight link to modelling frameworks
- Cope with multiple paradigms.
- Compositional Design
- Dynamic response to adaptation & evolution
- Covering cyber elements, physical, human, economic, social, ...

Tool-supported V&V:

- Exploration of Design Space
- Efficient verification by modelchecking and proof
- Test generation
- Simulation
- Tools Robustness
- Conformance during evolution, and emergence

Outline

- 1. Context: SOSs and the COMPASS project
- 2. Architectural challenges for SoSs
 - What is an architecture?
 - What is a pattern?
- 3. Modelling patterns for SoSs
 - Architectural patterns
- 4. Future work

What is an architecture?

An architectural design may address:

- **System structure:** major components of the system, their organisation and structure.
- System behaviour: "dynamic response of the system to events, providing a basis for reasoning about the system."
- System layout: physical layout & packaging of the system.
 Stevens et al. 1998

SoS Architectural Challenges

- Lack of full disclosure between CSs
- Accurately predicting emergent behaviours
- Long lifecycles, legacy or COTS components
- Constituent systems (CSs) evolve with/without the SoS
- Lack of central decision-making authority
- Multi-disciplinary, cross-domain
- High requirement for availability, a volatile operating environment

Newcastle

SoS Architectural Considerations

These prompt questions such as:

- How far do we need to control propagated changes?
- What is the required level of assurance of emergent behaviour?
- Is there a central decision-making authority?
- To what extent do we want separate concerns?
- How important is resilience or adaptability?
- Do we need a clear, traceable chain of command?

We need:

- a basis for comparing alternative SoS architectures
- a means of sharing and passing on experience

Newcastle

"A pattern describes a problem which occurs over and over again in our environment, and then describes the core of the solution to that problem, in such a way that you can use this solution a million times over, without ever doing it the same way twice"

Alexander et al., 1977

- 1. Context: SOSs and the COMPASS project
- 2. Architectural challenges for SoSs
 - What is an architecture?
 - What is a pattern?
- 3. Modelling patterns for SoSs
 - Architectural patterns
- 4. Future work

Patterns for SoS Models

We use *modelling pattern* to mean a pattern that can be applied to modelling aspects of a system, such as architecture or interfaces

Developing a catalogue of patterns can:

- Facilitate sharing lessons between SoS domains
 - Which SoS challenges does a pattern cope well with or cope badly with?
- Help us learn more about SoS contexts and constraints
 - How and why does a particular pattern arise?
 - How does an architecture or control structure affect SoS performance?

Patterns for SoS Models

- Patterns observed in or inspired by COMPASS SoSs:
 - Centralised
 - Service-oriented
 - Publish-subscribe
 - Pipe & Filter
 - Supply Chain
 - Reconfigurable Control
 - Infrastructure Grid
 - Blackboard

Patterns for SoS Models

- Patterns observed in or inspired by COMPASS SoSs:
 - Centralised
 - Service-oriented
 - Publish-subscribe
 - Pipe & Filter
 - Supply Chain
 - Reconfigurable Control
 - Infrastructure Grid
 - Blackboard

Centralised

- Central point of control
- "Hub" connected to other CSs, responsible for delivering SoS behaviour
- Hub typically developed specifically for SoS
- Some CSs may be legacy/COTS, or purpose-built
- May or may not force all CSs to communicate through the hub(s)
- Subtypes:
 - Fully centralised
 - Distributed-centralised
 - Hierarchical-centralised

SoS considerations

- Centralised control/management
- Can track and/or log where decisions are made
- Re-use existing systems
- If CSs communicate only through the hub, SoS can become loosely coupled
- Permits verification in early design stages

Reconfigurable Control

- Pattern to facilitate dynamic reconfiguration
- Dynamic reconfiguration requires some provisions:
 - CS functionality and (optionally) QoS must be specified
 - Alternatives are available for these functions
 - SoS can monitor current performance
- Metadata used to describe the functions CS offer
- A policy details when and how to reconfigure SoS
 - Lists necessary functions and minimum performance for each
 - Lists conditions under which action taken
 - Can provide prioritisation
- Explicit *reconfiguration control* CS can monitor CS functionality & performance to decide on actions

Reconfigurable Control

Subtypes:

Centralised

Decentralised

Reconfigurable Control

SoS considerations:

- Dynamic reconfiguration helps to provide resilience
- Performance optimisation facilitated
- Allows for central authority
- Should be partnered with a loosely-coupled architecture

Pipe & Filter

Pipe & Filter

- Data or materials processed from input form to output form
- Filters represent the processing steps
- Pipes represent connections between Filters
- Filters are independent, do not share state or know each other's identities

Garlan & Shaw 1996, Buschmann et al. 1996

SoS considerations

- Unsynchronised evolution is possible
- Dynamic reconfiguration is possible
- May or may not have central control

Supply Chain

Supply Chain

Supply Chain

A specialised pipe-and-filter

- Suppliers/integrators are the "filters"
- Logistics acts as a "pipe"

Differences with pipe-and-filter:

- Logistics shares internal state and participate actively
- CSs may be aware of the final goal
- CSs may be aware of internal status of their peers
- CSs are also capable of generating input to be returned upstream

- Delivers critical civil infrastructure, e.g., power, water, roads, communications, etc.
- Divided into fixed geographical regions, each operated by an autonomous controller
- CSs exchange flows with direct neighbours, and data with any other CS
- Optional central authority; regulations impose standardisation
- May optionally be a hub for communications

Infrastructure Grid

- Delivers critical civil infrastructure, e.g., power, water, roads, communications, etc.
- Divided into fixed geographical regions, each operated by an autonomous controller
- CSs exchange flows with direct neighbours, and data with any other CS
- Optional central authority; regulations impose standardisation
- May optionally be a hub for communications

Differences from pipe-and-filter:

- CSs know identity of neighbours
- The flow may be bi-directional
- CSs may share details of internal state

Subtypes:

- Fully decentralised: no organisation with overall control
- Partially decentralised: one organisation controls an important proportion of infrastructure
- Data-centralised: no overall authority, but there is a central hub for data sharing

Outline

- 1. Context: SOSs and the COMPASS project
- 2. Architectural challenges for SoSs
 - What is an architecture?
 - What is a pattern?
- 3. Modelling patterns for SoSs
 - Architectural patterns
- 4. Future work

SoS Architectural Considerations:

- How far do we need to control propagated changes?
- What is the required level of assurance of emergent behaviour?
- Is there a central decision-making authority?
- How important is resilience or adaptability?
- Do we need a clear, traceable chain of command?

We need:

- a basis for comparing alternative SoS architectures
- a means of sharing and passing on experience

- More patterns develop a catalogue
- SoS problems and means for assessing different SoS patterns against them
- Better understanding of how and why SoS patterns arise/are applied
- Better understanding of weaknesses/risks of each pattern
- Standardised approach for identifying, collecting and documenting patterns

This work is part of the COMPASS project: research into model-based techniques for developing, maintaining and analysing SoSs

Claire.Ingram@ncl.ac.uk > 9@ Claire Ingram

thecompassclub.org