

The Incremental Commitment Spiral Model as Applied to SoS

Jo Ann Lane

(San Diego State University) jalane@mail.sdsu.edu

Richard Turner

(Stevens Institute) rturner@stevens.edu

Presented to the SoSECIE - 8 September 2015

Agenda

ICSM Fundamentals

- Rationale and Legacy
- ICSM Principles
- ICSM General Framework and Views

ICSM and Systems of Systems

- ICSM for SoS Context
- ICSM for SoSE
- Sources for Additional Information and Related Research

ICSM Nature and Origins

- Integrates hardware, software, and human factors elements of systems life cycle
 - Concurrent exploration of needs and opportunities
 - Concurrent engineering of hardware, software, human aspects
 - Concurrency stabilized via anchor point milestones
- Responds to a variety of issues
 - Clarify "spiral development" usage
 - Provide framework for humansystems integration
- Builds on strengths of current process models, but not their weaknesses
- Facilitates transition from existing practices

ICSM Key Principles

Stakeholder value-based guidance

- Identify and know your success-critical stakeholders
- Sets priorities based on stakeholder value

Incremental commitment and accountability

- Bases commitments on knowledge
- Two-way accountability between stakeholders and developers with respect to commitments

Concurrent system engineering

 Strength from agile/lean communities that avoids invalid assumptions, avoids hard-to-undo early commitments, and minimizes rework

Evidence and risk-driven decisions

- Results in plans based on knowledge
- Avoids invalid assumptions and minimizes rework
- Avoids investment in impractical or overly risky system development efforts

What is Feasibility Evidence?

- Evidence provided by developer and validated by independent experts that:
- If the system is built to the specified architecture, it will
 - Satisfy the requirements: capability, interfaces, level of service, and evolution
 - Support the operational concept
 - Be buildable within the budgets and schedules in the plan
 - Generate a viable return on investment
 - Generate satisfactory outcomes for all success-critical stakeholders
- All major risks resolved or covered by risk management plans
- Serves as basis for stakeholder commitment to proceed
- Synchronizes and stabilizes concurrent activities

Meta-Principle (4+): Risk Balancing

Question: How much is enough?

- System scoping
- Planning
- Architecting
- Prototyping
- COTS evaluation
- Requirements detail
- Spare capacity
- Fault tolerance
- Safety
- Security

- Environmental protection
- Documenting
- Configuration management
- Quality assurance
- Peer reviewing
- Testing
- Use of formal methods
- Feasibility evidence

Answer: Balancing the risk of doing too little and the risk of doing too much will generally find a middle-course sweet spot that is about the best you can do.

The ICSM: Phased View

ICSM as Risk-Driven Process Generator

- ICSM has 5 decision anchors, each with 4 options
 - Risk-driven assessment on how to proceed
 - Some options involve go-backs
 - Results in many possible process paths

- Can use ICSM risk patterns to generate frequently-used processes
 - With confidence that they fit the situation
- Can generally determine this in the Valuation phase
 - Develop as proposed plan with risk-based evidence at FCR milestone
 - Adjustable in later phases

ICSM Patterns: How Phases Can Be Combined

New, complex Exploration Valuation **Foundations** Development Operations system **Target solutions** Exploration/Valuation Foundations Development Operations available Significant Exploration/Valuation/Foundations Development Operations modification of architecture Incremental development for Development Operations multiple increments

Going slow, going fast: Phase combinations based on scope, risks, and maturity of solution space

9

ICSM: Increment View

Used for each incremental development of each system element or level of systems-of-interest

ICSM Common Cases

- Software application or system
- Software-intensive device
- Hardware platform
- Family of systems or product line
- System of systems (SoS) or enterprise-wide system
- Brownfield modernization
- Software strategies for software cases
 - Architected agile
 - Agile
 - Plan-driven
 - Formal methods
 - COTS/services

ICSM Guidance for Each Phase

Activities September 2015 **Foundations** List of approved features/ Ensure technology readiness for requirements allocated to needed capabilities Analysis/results of any Monitor changes in needs/ components or configuration Valuation prototypes opportunities/risks Key risks and mitigation Approved Development plan Prototype and evaluate various Feature allocation to increments alternatives Approved Foundations Updated risks and mitigation Select acquisition/ development Turner strategy plan strategies Key stakeholder Updated stakeholder Prioritize features/ requirements commitments/MOAs commitments/MOAs for development ∞ Requests for proposals for Develop plan for development Boehm, Lane, Koolmanojwong, outsourced development Inputs based upon prioritization Update risks and risk mitigation Outputs plans **Exit Criteria Entry Criteria** Decision to develop necessary Decision to provide resources to proceed to Development Phase or foundations decision to discontinue **Budget for Foundations** activities

Process diagrams plus:

- Questions to guide phase activities
- Potential pitfalls during phase
- Likely major risks
- How phase scales from small to large/ complex
- Role of ICSMprinciples in phase

ICSM and Systems of Systems

ICSM Challenge: Multi-owner, multi-mission systems of systems (SoS)

- Numerous independently evolving external systems or services outside span of control
- Complicated/complex acquisition, development and evolution environment
- Satisficing among multiple stakeholders
- Wide diversity of needed capabilities
- No one-size-fits-all solutions or processes
- Finding appropriate balance of
 - Cost
 - Schedule
 - Risk
 - Level of capability
 - Future adaptability/flexibility

Types of SoS: Organizational Structures

ICSM Guidance for SoSE

- Questions to guide SoSE activities
- Potential pitfalls to avoid
- Major risks to watch for/mitigate
- Focus of principles for SoSE
- Examples of SoS capability feasibility evidence
- Key research contributing to ICSM for SoSE guidance:
 - Capability to Requirements Engineering (IEEE SoSE Conference 2014)
 - Schedule Compliance Risk Assessment Methodology (SCRAM) for SoS (IEEE SoSE Conference 2015)
 - Technical debt (journal paper submitted for publication)
 - Value-based scheduling for SoS (CSER 2015)

Identify desired capability(s)/ capability changes **Exploration** September 2015 Identify resources and viable options **Valuation** © Boehm, Lane, Koolmanojwong, & Turner Assess options and downselects **Foundations** Develops management and technical foundations and downselects further **Development** Enable develop via constituents Coordinate enablement of capability **Operations** Monitor and assess performance

Constituent a Constituent b Constituent c Constituent n

Sample Stage I Questions to Guide SoSE Activities

- What is the current state of the SoS
- What changes/new capabilities are desired
 - Who wants the new capability and why
 - Who are the key proponents and antagonists
 - How strong is the mission requirement/priority
- What are the value-based priorities associated with desired changes/new capabilities
- What are the options associated with each desired change/ new capability
 - Nontechnical options (e.g. operational changes)
 - Changes to existing constituent systems
 - Technical maturity, regulatory, legal, political, cultural issues associated with option
 - "New" system(s)
 - Interface to other existing systems or SoS
 - Commercial Off-the-Shelf (COTS) components
 - Develop new
- What is the expected "probability of success" for each option
- · What is the expected value vs. cost for each option

Capability Engineering: Methods, Processes, & Tools

Identify Technical Resources

SysML Objects

Determine Organizational Factors

Responsibility/ dependability modeling

Example Feasibility Assessment Activities

- Net-centricity/ interoperability matrices
- Use cases/simulations to evaluate aspects of "how"
- Technical debt assessments for candidate constituents
- SCRAM assessments for candidate constituents
- Trades/simulations with respect to data fusion algorithms/formats
- Cost and schedule estimates

Note: The level of rigor used is always risk-driven

Anchor Point Commitment Review to select option

Develop and allocate requirements to constituents

More on Feasibility Evidence for SoSE

Evidence can include results of

- Prototypes
 - E.g. networks, robots, algorithms, response times, COTS interoperability
 - To evaluate performance, scalability, accuracy, etc.
- Exercises: for mission performance, interoperability, security
- Models: for cost, schedule, performance, reliability; tradeoffs
- Simulations: for mission scalability, performance, reliability
- Analysis of infrastructure, data fusion, legacy compatibility
- Previous experience
- Combinations of the above

Validated by independent experts and constituent systems

- Realism of assumptions
- Representativeness of scenarios
- Thoroughness of analysis
- Coverage of key off-nominal conditions

Sample Stage II Questions to Guide SoSE Activities

- What is the current status associated with capabilities/ changes under development
 - Cost
 - Schedule
 - Quality assessments
 - Risks/risk mitigations
- For potential threats to success
 - Status of risk mitigations
 - Alternatives if constituent system is not successful with capability changes
- When and how to enable new capability(s)

Much of Stage II work is done by constituent system developers using an appropriate ICSM common case for their system

Common Pitfalls for SoSE

- Lack of attention to CS organizational and technical issues
- Understanding CS limitations (e.g., CS priorities vs. SoS priorities, interoperability, fragile systems that are difficult to change)
- Overly complex or complicated design
- Prototyping shortfalls
- No attention to tech refresh coordination issues, especially those that may impact interoperability between systems
- Not planning for data/database conversions required for system upgrades
- Deployments using "all or nothing" approach vs. incremental rollout
- Inadequate attention to
 - How users are using constituent systems/SoS
 - User suggestions/complaints
 - Changing external systems and services that may impact operation
- No attention to required SoS level safety or security certifications
- Poor integration and test planning/execution at the SoS level

Capability-Related Risks for SoSE

- Changing commitments of stakeholders/proponents/ constituents
- Key technologies that are not yet mature with respect to intended use
- Significant technical debt in constituent system(s) leading to schedule slips or capability gaps
- Reliance on older legacy systems that are close to end of life
- Critical engineering staff shortfalls
 - SoS-level
 - Constituent system level
- Lack of vendor support/weak critical links in candidate supply chains
- Overly optimistic plans, schedules, and estimates for next phase commitment
- Constituent systems do not understand the value of changes associated with SoS capabilities

ICSM Principles Apply to SoSE in Spades!

Stakeholder value-based guidance

 Need balance between SoS and constituent system successcritical stakeholders

Incremental commitment and accountability

 Multi-way commitments and accountability between SoS stakeholders, constituent system stakeholders, and development organizations

Concurrent system engineering

- SoSE adds another level of concurrent engineering
- Successful SoSE continually monitors for opportunities to expand and improve SoS capabilities

• Evidence and risk-driven decisions

- SoSE level
- Constituent system level
- Needs to be compatible

More Available on ICSM for SoS

- Medical First Responder SoS case study
 - How the ICSM principles can be applied in the SoS case
 - Feasibility analysis summaries for each phase
 - Risk and risk mitigation strategies at each phase
- Guidance for incrementally adopting ICSM
- How ICSM fits with other standards and frameworks

© Boehm, Lane, Koolmanojwong, & Turner September 2015

On-going or Future SERC Work Related to ICSM for SoS

- Integration of SysML models with cost estimations models
- Agile/Lean SE in SoS environments (DATASEM)
- Assessing and quantifying technical debt to support SoS capability trades
- SERC toolbox for SoSE tools
- SoSE Experiences for the SE Experience Accelerator

Questions and Discussion?

References for Further Information

- B. Boehm, J. Lane, S. Koolmanojwong, and R. Turner (2014); The Incremental Commitment Spiral Model: Principles and Practices for Successful Systems and Software, Addison-Wesley, ISBN-13: 978-0-80822-6.
- J. Lane, A. Pitman, B. Clark, and A. Tuffley (2015); SoS Capability Schedule Prediction, Proceedings of the IEEE System of Systems Engineering Conference, 17-20 May, San Antonio, TX.
- A. Tregubov and J. Lane (2015); Simulation of Kanban-Based Scheduling for Systems of Systems: Initial Results, Proceedings of the Conference on Systems Engineering Research, 17-19 March, Stevens Institute of Technology, Hoboken, NJ.
- Q. Zhanga, L. Huang, N. Jan, J. Lane, and H. Zhang (2015); Detecting and Evaluating Technical Debt in Software Systems: A Systematic Literature Review, submitted to the *Journal of Systems and Software*, June.
- R. Turner; L. Yilmaz; J. Smith; Donghuang Li; S. Chada; A. Smith.; A. Tregubov (2015); "Modeling an organizational view of the SoS towards managing its evolution," System of Systems Engineering Conference (SoSE), 2015 10th, vol., no., pp.480,485, 17-20 May.
- J. Lane (2014); Systems of Systems Capability to Requirements Engineering, Proceedings of the IEEE 9th Annual System of Systems Engineering Conference, Adelaide, Australia.
- R. Turner (2014); "Rediscovering Systems Engineering," INCOSE Insight, Vol.17, No. 2, July.
- B. Boehm; R. Turner; J. Lane; S. Koolmanojwong (2014); "High Maturity Is Not A Procrustean Bed," Crosstalk, Jul/Aug.
- R. Turner (2014); "Value-based Scheduling in System of Systems Evolution," Proceedings of the IEEE 9th International Conference on System of Systems Engineering (SoSE 2014).
- J. Lane and R. Turner (2013) "Improving Development Visibility and Flow in Large Operational Organizations," 4th International Conference on Lean Enterprise Software and Systems, Galway, Ireland, December 1-4, 2013, Proceedings, Lecture Notes in Business Information Processing, Vol. 167, pp 65-80, Springer-Verlag, Heidelberg.
- R. Turner (2013); "A Lean Approach to Scheduling Systems Engineering Resources," CrossTalk, May/June...
- J. Lane (2009); Cost Model Extensions to Support Systems Engineering Cost Estimation for Complex Systems and Systems of Systems, Proceedings of the Seventh Conference on Systems Engineering Research.