

DOD SoSECIE, August 11, 2015

Repeat Errors: Fire Engine Too Big

- Florida
 - 1. New truck to long for station
 - 2. Added to front of station
 - 3. Not enough clearance to access street

Arched doors in Boston

- Others:
 - Boston didn't fit in historic station
 - Tuscumbia, Alabama too tall
 - Dunfermline, Scotland too big for streets
 - Saranac Lake NY too tall & too heavy
 - Montcuq in the Lot, France too big for streets
 - Tarentum, PA too tall & too heavy
 - Elkville, III New station not built yet
 - London, Ontario, Canada too tall (measurement error)
 - Edmondson, AR too wide
 - Morant Bay Jamaica too wide for streets

Late Integration of Enabling Systems

Repeat Errors: Conclusion

"It's not that we shoot ourselves in the foot that surprises me...

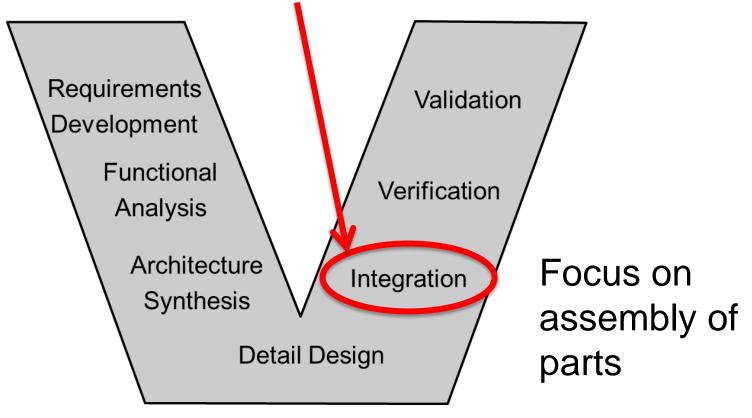
...it's how fast we reload!" - Anonymous

Can We Learn?

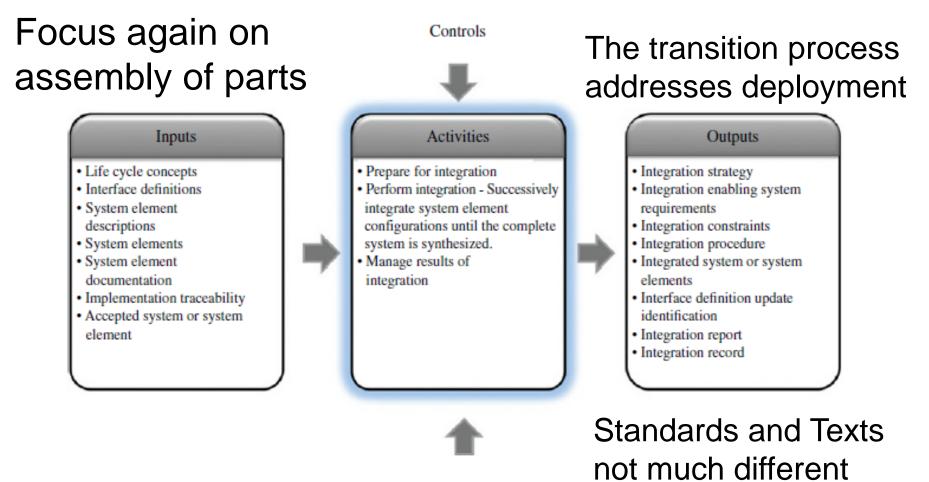
It is said that only a fool learns from his own mistakes, a wise man from the mistakes of others.

Otto von Bismarck

Do We Learn?


Spain's S-80 series submarine

- 100 tons overweight
- Will submerge
- Won't surface

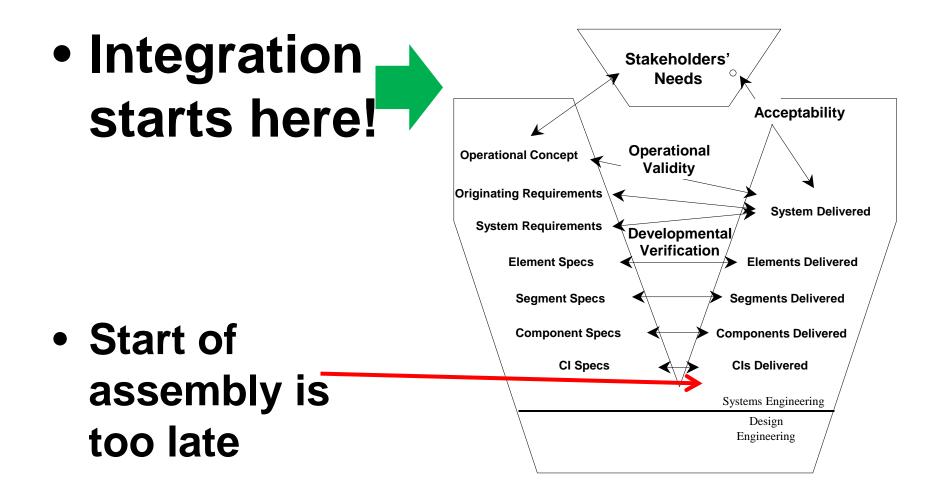


Problem Root Cause

View of integration as being only here

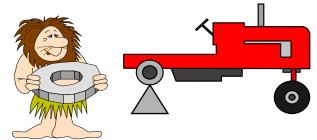
SE Handbook IDEF Diagram

Enablers


Better Ideas

So what can be done...

- <u>Early</u> actions
- Strategy
- Conway's Law
- Participate in requirements process
- Allocate and track
- Integrate architecture
- Cross-path Integration
- External interfaces and environment
- Human Systems Integration
- Model-based integration
- Consider multiples
- Integration Readiness Levels
- Deployment



Start Early

Integration Strategy

- Common: Assemble components as built
 - Simple
 - Reactive
 - Risky

- Better: Identify integration and deployment risks and mitigate in advance
 - More early activities
 - Proactive
 - reduces risks

 Note: CMMI says to define integration strategy, formerly said to define the assembly sequence

States of Systems Integration

Mische's (1998) four states of systems integration strategy:

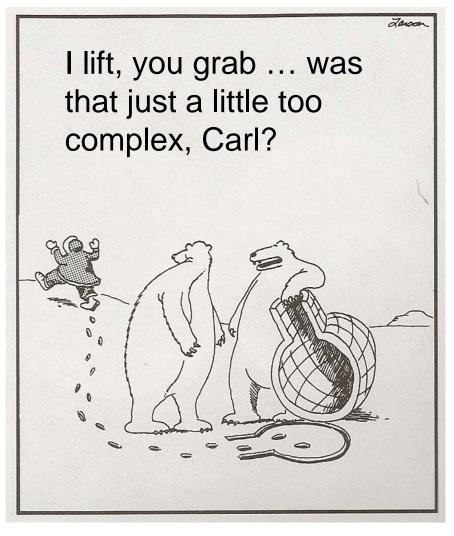
- Interconnectivity system components and equipment connect and work (basic interaction) together.
- Interoperability system components and equipment function and interact with each other.
- Semantic consistency Interactions are understood correctly, data has the same meaning.
- **Convergent integration**—system integrated with business processes, people, skills, and knowledge.

Conway's Law

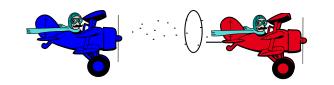
- Any organization that designs a system (defined broadly) will produce a design whose structure is a copy of the organization's communication structure.
- Organizational problems lead to system problems
- Example: Mars Climate Orbiter
 - Ground model used metrics JPL
 - Spacecraft expected 'English' (feet) LMCO
- Lesson: Integrate the enterprise first

DC Metro and Fire Systems

Delays in response during January fire in tunnel


Fire liaison position instituted in rail control center

Integrate Requirements


- Not all interface requirements are in ICDs
 - Environment
 - Human interface
 - Service agreements
 - MOUs
 - Hidden anywhere
- Provide requirements for integration
 - Access to measurement at interface
- Find conflicting requirements

Allocate and Track

- Know which parts contribute to performance and how
- Allocate critical
 parameters carefully
- Track frequently and at design level
 - Technical Performance Measures (TPMs)

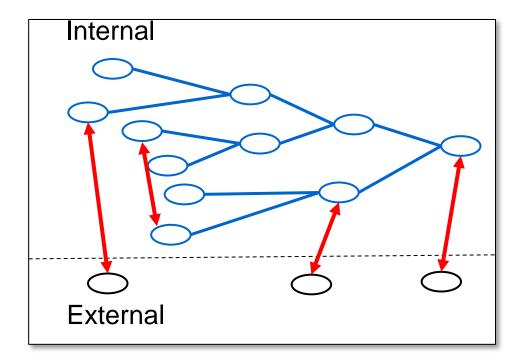
Allocations Happen

- Shotgun spread due to motion & time between shots
- Improvements in flight control and Gatling gun one misses, all miss!
- Fix shaker, then flexible mount
- Others with same or similar: F-104, B-52 Tail Gun, A-10, Cobra gunship, Roman arrow catapult

Late Integration of Technologies

Allocation Example

Function	Requirement	Component
Destroy Target	X% damage/hit	Bullets
Go to Target	+/- X degrees	Bullets
Propel Bullets	+/- X fps	Gun
	+/- X bullets/second	
	+/- X degrees	
Stabilize Bullets	+/- X RPM	Gun
Aim Gun	+/- degrees	Mount/airframe
Control Aircraft	<u>+/- stability</u>	Flight control
Find and Display Target	+/1 accuracy	Radar
Guide Aircraft	+/- control accuracy	Pilot
Provide Aerodynamics	+/- stability & response	Airframe


Integration of Architecture

- Physical
 - Does the structure work
 - Are things missing

- Approaches
 - Bottom up
 - Top down
 - Big bang

Early Cross-Path Integration

- Internal
 - Between components
- External
 - Other systems
 - Legacy
 - Operations
 - People
 - Environment

External Environment

Sydney Morning Herald – 10/13/97

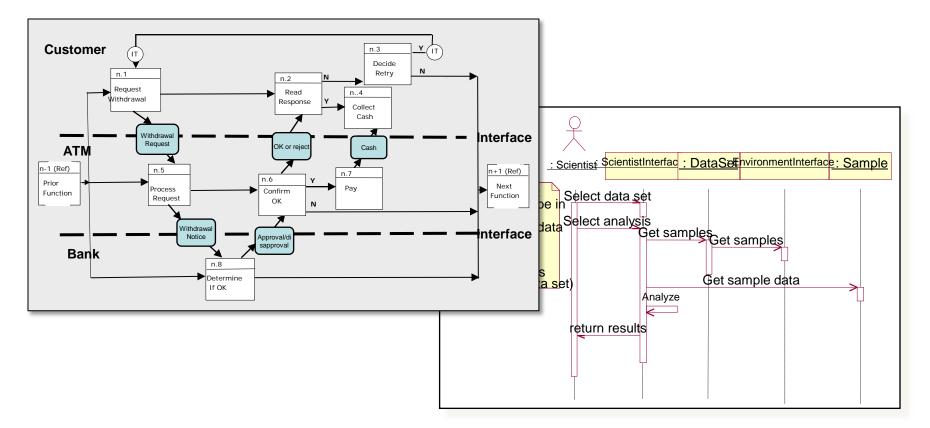
- Cars exhibit problems
 - Brakes jam on
 - Doors lock
 - Engines shut down
- Sources
 - Traffic light sensors
 - Taxi and police radios
 - Broadcast transmitters
 - Underground power lines

Human System Integration

- Downing of Iranian airliner
 - Washington Post headline: "System works, operator makes error"
 - But the operator is part of the system!

• Air France Flight 447

- Automation turns off
- Quick reaction required
- Questionable data
- Human response as expected?
- Therac-35
 - Operators faster than anticipated
 - Software didn't accept input
 - Patients died



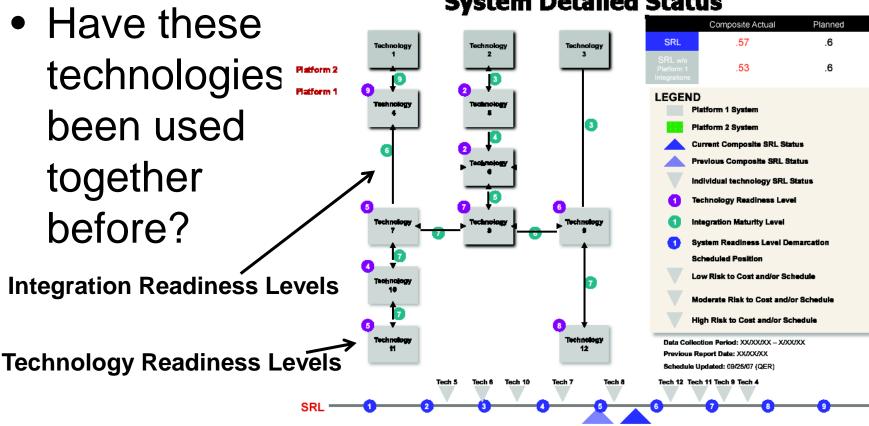
Integration of Architecture (cont'd)

- Functional
 - Is functional architecture defined
 - Model based integration
- Approach
 - Threads
 - Logical/functional
 - Temporal
 - Sequential
 - Communications
 - Procedural

Model-based Integration

 Executable models are valuable for interfaces

Model-based Integration

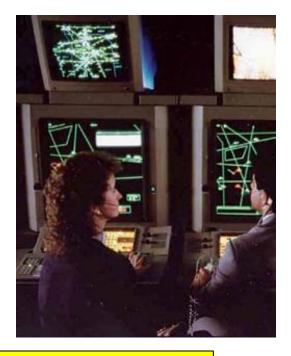

- Comanche Helicopter
 - Full model of gun operations
 - Included:
 - Equipment new and old
 - Pilot fresh and tired
 - Missions
- Navy ATC Communications
 - Full model

- Identified protocol errors in switch from 4-ship to individual aircraft
- Components integrated into model as developed

Integration Readiness Level

S(ystem)RL = IRL x TRL IRL = Integration Readiness Level

NOTE: ALL DATA IN THIS TEMPLATE IS NOTIONAL


System Detailed Status

sse.stevens.edu/fileadmin/cser/2006/papers/126-Sauser-TRL%20SRL.pdf

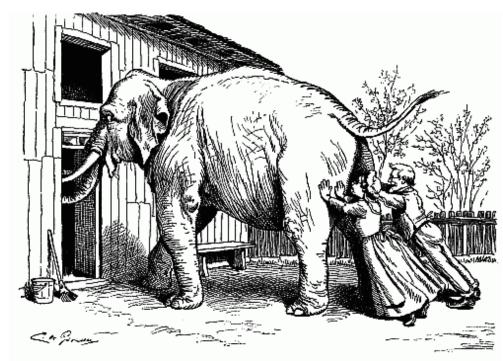
Multiple Copies

US Advanced Automation System

- New video recording function
 Full update every 12 seconds
 - Worked fine on single scope
- Laboratory Established
 - 6 full size scopes
 - -94 emulated
 - Crashed all four networks

Why not found by modeling early?

Integration of Testing


- Small satellite failed on launch
- Failure analysis unable to reproduce failure during single parameter test
- Combined thermal and vibration test revealed cause

 Decade later, same organization repeats same mistake!

Late Integrated Approach to Testing

Deployment

- Will it fit?
- Is support ready?
- Transportation?
- Training?
- Local customs?
- Environment?
- Schedule?
- Geography?
- Does it work for the user in their operations?

Integration Management Methods

- Interface Control Working Groups (ICWG)
 - Members from both (all) sides of the interface
 - Addresses interface issues
- Systems Engineering Interface Team (SEIT)
 - Members from IPTs on a program
 - Addresses interface issues
 - Maintains commonality of discipline approaches
- Configuration Management of ICDs
 - Specific process for interface related changes
- Interface Design Review
 - Between PDR and CDR
 - Focus on only the interfaces

England's High Speed 2

- Considering integration with
 - Existing rail
 - Air
 - Where you live
 - Where you are going

INCOSE Presentation, IS 2012, Rome, Italy

Conclusion

- Yes, we can do better with...
 - -Early start
 - -Continued effort
 - -Systems thinking

There is a lot of integration to do <u>before</u> and <u>after</u> putting the pieces together!

Questions?

Jim Armstrong Industry Professor, Stevens Institute of Technology jimarmstrong29@aol.com

