Lifecycle Modeling Language
(LML) and Systems of Systems
(S0S)

Presented to
Systems of Systems Engineering Collaborators Info Exchange

by
Steven H. Dam, Ph.D., ESEP
May 19, 2015

M ASP=C
[LML £ SP=0

Overview

« Why a New Language?
e Lifecycle Modeling Language Overview
e How can LML support S0S?

Why a New Language?

Complex Systems Implications for
Systems Engineering

Complexity has been identified by many as a critical problem facing system engineers

» Larger and more complex systems (including systems
of systems) development creates a need for:
e Larger and more distributed teams

» A clear concise way to express the system design (clear and
logically consistent semantics)

* New tools to enable collaboration across the entire lifecycle

‘Complexity

= \With the growth of the Internet and
daily changes in IT, systems have
become more complex and change
more rapidly than ever before

* Cloud computing gives us new tools
to deal with these larger systems

» Systems engineering methods have
not kept up with these changes

@‘ Complexity is a Major Issue

+ Integration of systems create a major problem with

. Systems engineering must deal with this complexity - 15

complexity
— Within in a system, interactions grow as N squared or
worse
— Ability to understand and test becomes less certain
— As more systems are added, the interfaces grow in a
non-linear fashion
— Many of the existing systems are old and not built for
these interfaces e A
— Conflicting or missing interface standards make it hard .
to define interface interactions
— Hardware and software may be re-purposed and
“heritage” compromised
- Future 5¥stems will be integrated from multi-
rganizational, multi-national contributions, adding
d|t|onal layers of complexity:.

— -

— End-to-end systems engineering is needed, including e
“reengineering” of old systems

- Roblijst M&S, verification and validation testing are A
mus

Systems engineering must deal with this complexity

= SE has been relegated to the - — End-to-end systems engineering is needed, including

beginning of the lifecycle

From a presentation by Dr. Michael Ryschkewitsch, NASA Chief
Engineer, at CSER Conference 15 April 2011

“reengineering” of old systems
- Robust M&S, verifi catlon and valldatlon testlng are -

How Does SE Typically Respond to
Complexity

* Focus on “architecture”
* More complex languages
» More complex procedures

» More layers of abstraction
e “Systems of Systems”
e “Family of Systems”
» “Portfolio Management”
 “Capability Views”

* Need more time and money!

More Money Is a Problem

Use and Challenges vary throughout
- the life. cvcle |

= Calls for doing more with less continue i

Early Phases; conduct Systems Analys:s and

- trade studies - -

* Need for lower labor and tool costs :
essential for acceptance of SE across

How can we simplify T

things enable “quicker/ @
cheaper?” Start with the |
language we use. -

-How to enable
" fidelity yet can

. Develop feasible, cost effective options

- How to enable modeling that provides the needed
fidelity yet can be done quickly and cheaply?

the lifecycle

Exercise through CONOPS .
Rapidly dismiss fauity options

Identify “advanced technology requirements

Current methodq teqd to be wetware mIense .

Development

Refine Design, support Valrdahon & Verr‘lcatlon : : : '
i s mendichvko

How to better enable integration of discipline orlenled desrgn tools into-systems models
that capture functional and performance. behaviors

How to capture system design rationale, assumptions and olher backg:ound data

How do we develop. the standards that allow Iowsles‘: mtegranon across organization and
tool boundaries?

. Operatlons - : - - -
. Provide . data.for.ops team, resolve .in flight issues, address. parts obsolescence .

How do we make the full suite of information captured dunng design and development

" auailahle tn the nneratare withrut havina nrar knnadedne of their neade?

modeling that provides the needed |
be done quickly and chea_;_)_ly’?

From a presentation by Dr. Michael Ryschkewitsch,
NASA Chief Engineer, at CSER Conference 15 April 2011

Asp=g

(INNEIVATIDN':‘

State of Current “Language”

" |In the past decade, the Unified Modeling Language (UML) and
now the profile Systems Modeling Language (SysML) have
dominated the discussion

= \Why?
» Perception that software is “the problem”
* Hence need for an “object” approach

» SysML was designed to relate systems thinking to software
development, thus improving communication between systems
engineers (SE) and software developers

Why ODbjects Are Not the Answer

» Although SysML may improve the communication of design
between SEs and the software developers it does not
communicate well to anyone else

* No other discipline in the lifecycle uses object oriented design and
analysis extensively

« Users in particular have little interest/acceptance of this technique

o Software developers who have adopted Agile programming techniques
want functional requirements (and resent SEs trying to write software)

 Many software languages are hybrid object and functional

Popular Software Languages

Position Position Programming Ratings Delta Functional/
Mar 2012 Mar 2011 Language Mar 2012 Mar 2011 Object/Hybrid
1 1 Java 17.110% -2.60% Object
2 2 C 17.087% +1.82% Functional

3 4 CH# 8.244% +1.03% Hybrid
4 3 C++ 8.047% -0.71% Hybrid
5 8 Objective-C 7.737% +4.22% Object
6 5 PHP 5.555% -1.01% Hybrid
7 7 (Visual) Basic 4.369% -0.34% Hybrid
8 10 JavaScript 3.386% +1.52% Functional
9 6 Python 3.291% -2.45% Hybrid
10 9 Perl 2.703% +0.73% Hybrid

Asp=g

?INNDVATIEINE

http://www.tiobe.com/content/paperinfo/tpci/Java.html
http://www.tiobe.com/content/paperinfo/tpci/C.html
http://www.tiobe.com/content/paperinfo/tpci/C_.html
http://www.tiobe.com/content/paperinfo/tpci/C__.html
http://www.tiobe.com/content/paperinfo/tpci/Objective-C.html
http://www.tiobe.com/content/paperinfo/tpci/PHP.html
http://www.tiobe.com/content/paperinfo/tpci/(Visual)_Basic.html
http://www.tiobe.com/content/paperinfo/tpci/JavaScript.html
http://www.tiobe.com/content/paperinfo/tpci/Python.html
http://www.tiobe.com/content/paperinfo/tpci/Perl.html

So What Do We Do?

* Recognize that our primary job as SEs Is to communicate
between all stakeholders in the lifecycle

* Be prepared to translate between all the disciplines
* Reduce complexity in our language to facilitate communication

What We Did

* |In preparing for the cloud computing world of SE we:

* Researched the variety of languages (ontologies) in common use
(DM2, SysML, BPMN, IDEF, SREM, etc.)

* Researched the variety of representations (FFBDs, N2, Behavior
Diagrams, Class Diagrams, Electrical Engineering Diagrams, etc.)

» Took the best of each of these languages and representations and
distilled them down to the essential elements, relationships, attributes,
and diagrams

LIFECYCLE MODELING LANGUAGE (LML)
OVERVIEW

A language to simplify system design description for the cloud

Lifecycle Modeling Language (LML)

* LML combines the logical constructs with an ontology to capture
Information
e SysML — mainly constructs — limited ontology
 DoDAF Metamodel 2.0 (DM2) ontology only

» LML simplifies both the “constructs” and ontology to make them
more complete, yet easier to use

LML Ontology* Overview

= Taxonomy**:
e 12 primary element classes

* Many types of each element class
» Action (types = Function, Activity, Task, etc.)

» Relationships: almost all classes related to each |3l
other and themselves with consistent words terms or concepts

» Asset performs Action/Action performed by Asset
» Hierarchies: decomposed by/decomposes
» Peer-to-Peer: related to/relates

LML'’s Simplified Schema

= Action e Decision
= Artifact e Input/Output Supports capturing
= Asset e Location information
* RESONCSN » Physical, throughout the
= Characteristic Orbital, Virtual lifecycle
. I\/Ieasu_re . Risk
= Connection

° Conduit . Statement
e Logical e Requirement

» Cost e TiIme

LML Models

Documentation Entities

Statement/
Requirements

Primary Entities Primary Entities

« Action Functional _ Asset/Resource
e Input/Output Model Physical Model Connection

§)|

Parametric and Program Entities

Characteristic/
Measure

A SP=C

(INNEIVATIDNS

LML Primary Entities and Relationships
for DODAF Support

Artifact decomposed
by/

decomposes
source of/sourced by

Statement
decomposed . gefomposed
by! (Requirement) by
decomposes ecomposes

traced from/traced to
generated by/

enerates
Input/Output — decomposed
received by/ by/
receives decomposes

transferred by/transfers performed by/performs

Connection Asset decomposed

(Conduit) connects (Resources) by/
decomposes

specified by/specifies

decomposed
by/ Characteristic decomposed
decomposes by/

(Measure)

decomposes

Asp=g

(INNDVATIDNS

LML Relationships Provide Linkage
Needed Between the Classes

Location
L Connection N
. . Asset Characteristic . (Orbital, " Statement .
Action Artifact (Conduit, Cost Input/Output) Risk) Time
(Resource) (Measure) Logical) Physical, (Requirement)
Virtual)
(consumes) causes (satisfies)
. d d by* rformed by b t
Action ecomposecioy references perigrmeciy specified by - incurs enables Benerates located at mitigates traced from occurs
related to* (produces) results in receives o
P resolves (verifies)
seizes
referenced by
causes
decomposed by* referenced by | defines protocol for incurs enables itgates {satisfes)
Artifact referenced by sy AEE 7 & referenced by referenced by located at B source of occurs
related to* specified by referenced by referenced by . referenced by
results in traced from
resolves -
(verifies)
d b b
{consumed by) decomposed by* enavies causes (satisfies)
Asset performs . made .
i refer] ces orbited by* spe. fied by connected by incurs ot - located at mitigates traced from oceurs
roduce responds to
(Resource) "‘ "]" related to* P ‘t resolves (verifies)
seized by results in
. causes (satisfies)
Characteristic _ e) Jfpinrosed by _ incurs el _ located at mitigates S e
specifies ; specifies related to* specifies o results in specifies - .
(Measure) specifies N specifies . specifies resolves traced from specifies
specified by specifies ; :
specifies (verifies)
Connection decomposed by* causes (satisfies)
) defined protocol by enables
(Conduit, - connects to specified by joined by* incurs 3 transfers located at mitigates traced from occurs
references ; results in o
Logical) related to resolves (verifies)
causes incurred by
enables
: incurred by , incurred by _ decomposed by* | : incurred by (satisfies)
incurred by incurred by . incurred b incurred b incurred by located at o occurs
Cost d references Y specified by Y related to* ! i iny d mitigates traced from
resolves (verifies)
causes
enabled by alternative
bled b bled b bled b bled by date resolved b
» enabled by QR made by cnapecsy. enabled by cnaprecy. decomposed by* enabled by enablecioy: enabled by ate resolvecioy
Decision references result of incurs located at mitigated by decision due
result of responded by result of related to* result of traced from
result of specified by result of result of occurs
result of result of
resolves
causes (satisfies)
ted b bl d d by*
Input/Output | Seneratec™y references - specified by transferred b incurs enaves LT L located at mitigates traced from occurs
P P received by P d Y resltsin related to* &
resolves (verifies)
Location
locates
(Orbital, locates decomposed by locates (satisfies)
posed by
" locates locates locates - locates locates locates locates . o oceurs
Physical, specified by related to mitigates traced from
Logical) (verifies)
caused by
caused b caused b caused b d by*
caused by " v caused by v caused by N ¥ enables caused by CaE=lby . caused by
. o mitigated by . mitigated by " incurs o o located at decomposed by’ . occurs
Risk mitigated by mitigated by mitigated by ™ mitigated by mitigated by " mitigated by o
references resolved by mitigated by ; mitigated by related to* mitigated by
resolved by resolved by } resolved by results in resolved by resolved by
resolved by specified by resolved by B8 resolved by*
references
(satisified by) incurs alternative of located at
i fi f i f
SR (satisfied by) (satisified by) (satisified by) Ty (satisified by) R i (satisified by) T causes P occurs
N traced to sourced by traced to o traced to e et traced to e mitigates = (satisified by)
(Requirement) | crifieq by) e (verified by) ! (i) ic (vt i) " resolves (i)
e (verified by) (verified by) results in (verified by) related to*
i
date resolves occurred by
d b d b d d by*
Time occurred by occurred by occurred by CECELEY occurred by occurred by decided by occurred by occurred by A (satisfies) RSy
specified by mitigates o related to*
occurred by (verifies)

decomposed by*
orbited by*
related to*

A sp=C

INNOVATIONS

Diagrams Are Needed for Every Class

= Action Diagram (Mandatory) » Class/Block Definition

= Asset Diagram (Mandatory) Di.ag;?:wmo e

= Spider Diagram (Mandatory) e Risk Chart

" Interface Diagrams « Standard risk/opportunity
* N2 (Assets or Actions) chart
» Hierarchy Diagrams e Organization Charts
« Automatically color coded by class e Showing lines of
: : communication, as well as
* Time Diagrams lines of authority
» Gantt Charts . Pie/Bar/Line Charts

e Timeline Diagram

: ' » For cost and performance
= | ocation Diagrams

« Combined Physical and

» Maps for Earth Functional Diagram
e Orbital charts J

Action Diagram (Mandatory)

SELECTION

Condltlon 1

No constructs — only SEQUENTIAL
special types of Actions

— ones that enable the —*M M
modeling of command
and control/information FAALLEL L to n (terate)
assurance to capture S {””“' S
the critical decisions in
your model

Condition 2

Action C

Action B : Action C

Diagram Comparison: SYSML

act
PARAMETER
OBJECT NODE — A bunction
(PIN) ‘ Construct J ‘
3 o i R OO /\;{:pticrralw IEREE
L LHEI=-2X] =
| _l:::._»m_.‘l_ A Function 1 o GUARD {
OBJECT 7 { condition \
FLOW ™—a = o | [before third time |
- ltem 2 e |
External 2.1 Serial zoptionals [after
I put Function third
fime |
\ lem3 L |
\ INVOCATION
ACTION
ACTIVITY
PARAMETER 2.3 Function in JOIN
INITIAL Concurrency
NODE CONTROL ' T hem 4
FLOW

Externa
Output

/

agptionals

2.6 Output
Function

ecplionals

Figure 9. UML 2 Activity diagram corresponding to Figure 3.

Source: http://www.mel.nist.gov/msidlibrary/doc/sysmlactivity.pdf

Asp=C

?INNDVATIEINE

http://www.mel.nist.gov/msidlibrary/doc/sysmlactivity.pdf

LML Action Diagram Captures Functional
and Data Flow

1.4 P

. . External
Optional Action 1 Output

I —
Input/Output 1 \
——

1.2
& Which path?

1.6
Optional Action 2 in 1.7

Loop Synchronize
Information

Trigger

Input/Output 3 —

1.3 Action in —

Parallel
Action

External Input

A sp=C

=2
/(— INNOVATIONS

Execution Logic — Concurrency With
Trigger; No Coordination Action

Action Diagram Timeline

0 sec y sec y + X sec

coordinated by Asset A

Duration = x sec

— Action A B
» Action B 5

Duration =y sec

Action B

Trigger: Action A enabled, but must wait to execute; Asset A performs Action A Finish to Start (FS)
between B and A

Asset Diagram (mandatory)

Conduit Block diagram
(general form

|
| q Block diagram using pictures

Spider Diagram (Mandatory for
Traceabillity)

5.2
__y cenario 2
Legend s.1.4 - L ___.du-‘_-:'.'—.é'ﬂ‘*"'
B connected by Publish
[cod Launch
= Location
T
.
W = "
W rece 5.1
e OWwWS entities
W rraced Scenario 1
1.2 Launch
Laser 5.2.4 |y 7] Lacation 1|
designation Task Defense & Te0
- Asset
RN
1.3 -

W
Discovery of 5

d I t | .
| and relationships
3, Launch
. -""E___F#H Location
111 Dl
b 1 — Publish raw —
information 1?&{(;;—\3__&—%_"__ Thie P i _

——GEompoies
architecture

L] L]
= | 7
and procassed /
data 1 /
< Hz
s e
1.4 el
New UAV
Strike aircraft e
will receive /2 e r -ai:'c?‘f-tc'w; 5.1.8
£3 Physical N
& Context {SV-1) Update TEL
Location
SPEC A \)(/(éi
TST 5084 }\ A
Patntint Sensor Data : &
Specification {Launch) 3 5.1.5 AE
i Publish Track Location
kwsuéllénk to 1| ".I Update
k| \
£l 3
=
| 5.1.12
335 s.1 1* Update Strike
bednmine = TEL Track Data Asset
LDl:a-tiﬁn Detect Launch
L]
/512
Track
Launcher

LML Translation

» Two types of mapping for tailoring:
 Map names of classes to enable other “schema” models to be used

 Map symbols used (e.g., change from LML Logic to Electrical
Engineering symbols)
 Enable diagram translations (e.g., Action Diagram to IDEF 0)

LML Class SysML LML Electrical
Symbol Engineering

Asset Performer Actor

Example: Translation to DM2

A is-performable-under

Guidance

constrains
Standard) (& : - ' .I
. sk requires-ability-to-perform o
Activity < Capability
has
cCRnsumes IS5
_ perfarmed- reallzed achieves-desired-
@ i5-the-goal-of ' / effect (a state of a
_ W'“A i WHY resource)
Resource
describes-something
M ateriel
Not shown but implied by the Perform er
IDEAS Foundation: % :
* Everything is 4-D and so has Orgammmn v ¢ Location

{ GeoPolitical

temporal parts, i.e., states _
¢ Everything has parts @ "0
* Everything has subfypes

is-part-of anything can have Measures
i

A

4

Sr=0

INNOVATIONS

DM2 Conceptual Model to LML Schema
Mapping

Activity Action

Capability Action with “Capability” type
Condition Characteristic with “Condition” type
Information/Data Input/Output

Desired Effect Statement with “Desired Effect” type
Guidance Statement with “Guidance” type
Measure Measure

Measure Type Measure Type

Location Location

Project Action with “Project” type

Resource Asset with types for “Materiel,” “Organization,” etc.
Skill Characteristic with “Skill” type

Vision Statement with “Vision” type

How can LML support SoS?

Systems of Systems

» Definition*: “An SoS is defined as a set or arrangement of
systems that results when independent and useful systems are
Integrated into a larger system that delivers unigue capabilities”

» S0S’s can be
* Virtual (lack central management and purpose)
« Collaborative (voluntary interaction)
« Acknowledged (independent, with higher level coordination)
» Directed (integrated)

* The common denominator in all the SoS types: systems are
dependent on other systems

*From Systems Engineering Guide for Systems of Systems

How do we capture and manage
dependencies?

= First, we need to identify the relationship between the different
systems

« LML provides a set of relationships between Assets and Actions
(Programs) that can capture this traceability
» Assets are related to other Assets
» Actions are related to other Actions

» Assets perform Actions

* Note the “related to/relates” relationships have an attribute for context
» This attribute enables you to identify which Asset is dependent on the other
e |f the you want to add another relationship between Assets and/or

Actions, LML encourages extensions for specific domains (e.g., DoDAF
& SysML)

What Next?

» \We want to establish the relationship between the different
system schedules

 The Time entity can be used to capture specific milestones, which can
then also be related to one another using the related to/relates
relationship

 Visualization suggested is a timeline chart
» Timeline charts can be created and compared

e LML also provides another mechanism for time — the duration and start
attributes for Action entities provide a means to capture tasks and
milestones as part of the program process model

* Note that the language provides more than one way to capture
and express the necessary information giving the analyst some
flexibility to communicate to a broad audience

Capture other program information

* LML’s ontology provides a means to capture other program
Information, such as Artifacts, Statement/Requirements,
Input/Outputs (e.g., deliverables), Risks, Decisions, Location,
and Costs

= This information can be related to each other within and
between programs

= Critical information (dependencies) between the programs can
also be related to each other

By capturing all the relevant program information in one place, it is easier to identify
potential areas of concern and resolve them before they become problems

LML Summary

* LML provides a ontological foundation for supporting SoS SE

» LML contains the basic technical and programmatic classes
needed for the lifecycle

= LML defines the Action Diagram to enable better definition of
ogic as functional requirements

* LML uses Physical Diagram to provide for abstraction,
Instances, and clones, thus simplifying physical models

* LML provides the “80% solution”

* It can be extended to meet specific needs (e.g. adding Question and
Answer classes for a survey tool that feeds information into the

modeling)

For more information

» See the LML specification at www.lifecyclemodeling.org
* For implementation see www.innoslate.com

» Contact Steve Dam at www.specinnovations.com or
sdam@specinno.com

http://www.lifecyclemodeling.org/
http://www.innoslate.com/
http://www.specinnovations.com/
mailto:sdam@specinno.com

	Lifecycle Modeling Language (LML) and Systems of Systems (SoS)
	Overview
	Why a New Language?
	Complex Systems Implications for Systems Engineering
	Complexity
	How Does SE Typically Respond to Complexity
	More Money is a Problem
	State of Current “Language”
	Why Objects Are Not the Answer
	Popular Software Languages
	So What Do We Do?
	What We Did
	LIFECYCLE MODELING LANGUAGE (LML) OVERVIEW�A language to simplify system design description for the cloud��
	Lifecycle Modeling Language (LML)
	LML Ontology* Overview
	LML’s Simplified Schema
	LML Models
	LML Primary Entities and Relationships for DoDAF Support
	LML Relationships Provide Linkage Needed Between the Classes
	Diagrams Are Needed for Every Class
	Action Diagram (Mandatory)
	Diagram Comparison: SYSML
	LML Action Diagram Captures Functional and Data Flow
	Execution Logic – Concurrency With Trigger; No Coordination Action
	Asset Diagram (mandatory)
	Spider Diagram (Mandatory for Traceability)
	LML Translation
	Example: Translation to DM2
	DM2 Conceptual Model to LML Schema Mapping
	How can LML support SoS?
	Systems of Systems
	How do we capture and manage dependencies?
	What Next?
	Capture other program information
	LML Summary
	For more information

