
Lifecycle Modeling Language
(LML) and Systems of Systems

(SoS)
Presented to

Systems of Systems Engineering Collaborators Info Exchange
by

Steven H. Dam, Ph.D., ESEP
May 19, 2015

• Why a New Language?
• Lifecycle Modeling Language Overview
• How can LML support SoS?

Overview

Why a New Language?

3

Complex Systems Implications for
Systems Engineering
Complexity has been identified by many as a critical problem facing system engineers

 Larger and more complex systems (including systems
of systems) development creates a need for:

• Larger and more distributed teams
• A clear concise way to express the system design (clear and

logically consistent semantics)
• New tools to enable collaboration across the entire lifecycle

Complexity
With the growth of the Internet and

daily changes in IT, systems have
become more complex and change
more rapidly than ever before
Cloud computing gives us new tools

to deal with these larger systems
Systems engineering methods have

not kept up with these changes
SE has been relegated to the

beginning of the lifecycle
From a presentation by Dr. Michael Ryschkewitsch, NASA Chief
Engineer, at CSER Conference 15 April 2011

How Does SE Typically Respond to
Complexity
 Focus on “architecture”
More complex languages
More complex procedures
More layers of abstraction

• “Systems of Systems”
• “Family of Systems”
• “Portfolio Management”
• “Capability Views”

Need more time and money!

More Money is a Problem

Calls for doing more with less continue
Need for lower labor and tool costs

essential for acceptance of SE across
the lifecycle

From a presentation by Dr. Michael Ryschkewitsch,
NASA Chief Engineer, at CSER Conference 15 April 2011

How can we simplify
things enable “quicker/

cheaper?” Start with the
language we use.

State of Current “Language”

 In the past decade, the Unified Modeling Language (UML) and
now the profile Systems Modeling Language (SysML) have
dominated the discussion
Why?

• Perception that software is “the problem”
• Hence need for an “object” approach

SysML was designed to relate systems thinking to software
development, thus improving communication between systems
engineers (SE) and software developers

Why Objects Are Not the Answer

Although SysML may improve the communication of design
between SEs and the software developers it does not
communicate well to anyone else

• No other discipline in the lifecycle uses object oriented design and
analysis extensively

• Users in particular have little interest/acceptance of this technique
• Software developers who have adopted Agile programming techniques

want functional requirements (and resent SEs trying to write software)
• Many software languages are hybrid object and functional

Popular Software Languages
Position

Mar 2012
Position

Mar 2011
Programming

Language
Ratings

Mar 2012
Delta

Mar 2011
Functional/

Object/Hybrid

1 1 Java 17.110% -2.60% Object

2 2 C 17.087% +1.82% Functional

3 4 C# 8.244% +1.03% Hybrid

4 3 C++ 8.047% -0.71% Hybrid

5 8 Objective-C 7.737% +4.22% Object

6 5 PHP 5.555% -1.01% Hybrid

7 7 (Visual) Basic 4.369% -0.34% Hybrid

8 10 JavaScript 3.386% +1.52% Functional

9 6 Python 3.291% -2.45% Hybrid

10 9 Perl 2.703% +0.73% Hybrid

http://www.tiobe.com/content/paperinfo/tpci/Java.html
http://www.tiobe.com/content/paperinfo/tpci/C.html
http://www.tiobe.com/content/paperinfo/tpci/C_.html
http://www.tiobe.com/content/paperinfo/tpci/C__.html
http://www.tiobe.com/content/paperinfo/tpci/Objective-C.html
http://www.tiobe.com/content/paperinfo/tpci/PHP.html
http://www.tiobe.com/content/paperinfo/tpci/(Visual)_Basic.html
http://www.tiobe.com/content/paperinfo/tpci/JavaScript.html
http://www.tiobe.com/content/paperinfo/tpci/Python.html
http://www.tiobe.com/content/paperinfo/tpci/Perl.html

So What Do We Do?

Recognize that our primary job as SEs is to communicate
between all stakeholders in the lifecycle
Be prepared to translate between all the disciplines
Reduce complexity in our language to facilitate communication

What We Did
 In preparing for the cloud computing world of SE we:

• Researched the variety of languages (ontologies) in common use
(DM2, SysML, BPMN, IDEF, SREM, etc.)

• Researched the variety of representations (FFBDs, N2, Behavior
Diagrams, Class Diagrams, Electrical Engineering Diagrams, etc.)

• Took the best of each of these languages and representations and
distilled them down to the essential elements, relationships, attributes,
and diagrams

The Result: Lifecycle Modeling Language

LIFECYCLE MODELING LANGUAGE (LML)
OVERVIEW

A language to simplify system design description for the cloud

13

Lifecycle Modeling Language (LML)

 LML combines the logical constructs with an ontology to capture
information

• SysML – mainly constructs – limited ontology
• DoDAF Metamodel 2.0 (DM2) ontology only

 LML simplifies both the “constructs” and ontology to make them
more complete, yet easier to use

Goal: A language that works across the full lifecycle

LML Ontology* Overview

 Taxonomy**:
• 12 primary element classes
• Many types of each element class

Action (types = Function, Activity, Task, etc.)

Relationships: almost all classes related to each
other and themselves with consistent words

• Asset performs Action/Action performed by Asset
• Hierarchies: decomposed by/decomposes
• Peer-to-Peer: related to/relates

*Ontology = Taxonomy +
relationships among terms
and concepts
** Taxonomy = Collection
of standardized, defined
terms or concepts

LML’s Simplified Schema

Action
Artifact
Asset

• Resource
Characteristic

• Measure
Connection

• Conduit
• Logical

Cost

• Decision
• Input/Output
• Location

• Physical,
Orbital, Virtual

• Risk
• Statement

• Requirement
• Time

Supports capturing
information

throughout the
lifecycle

LML Models
Documentation Entities

Parametric and Program Entities

Functional
Model Physical Model

Primary Entities
• Action
• Input/Output

Statement/
Requirements

Cost

Time

Characteristic/
Measure

Location

Artifact

Risk

Decision

Primary Entities
• Asset/Resource
• Connection

LML Primary Entities and Relationships
for DoDAF Support

Artifact decomposed
by/
decomposes

Statement
(Requirement)

Characteristic
(Measure)

source of/sourced by

Action

traced from/traced to

Asset
(Resources)

performed by/performs

Input/Output

specified by/specifies

Connection
(Conduit)

transferred by/transfers

connected by/
connects

generated by/
generates
received by/

receives

decomposed
by/
decomposes

decomposed
by/
decomposes

decomposed
by/
decomposes

decomposed
by/
decomposes

decomposed
by/
decomposes

decomposed
by/
decomposes

LML Relationships Provide Linkage
Needed Between the Classes

Action Artifact Asset

(Resource)
Characteristic

(Measure)

Connection
(Conduit,
Logical)

Cost Decision Input/Output

Location
(Orbital,
Physical,
Virtual)

Risk Statement
(Requirement)

Time

Action decomposed by*
related to*

references

(consumes)
performed by

(produces)
(seizes)

specified by - incurs
enables

results in
generates
receives

located at
causes

mitigates
resolves

(satisfies)
traced from

(verifies)
occurs

Artifact referenced by
decomposed by*

related to*
referenced by

referenced by
specified by

defines protocol for
referenced by

incurs
referenced by

enables
referenced by

results in
referenced by located at

causes
mitigates

referenced by
resolves

referenced by
(satisfies)
source of

traced from
(verifies)

occurs

Asset
(Resource)

(consumed by)
performs

(produced by)
(seized by)

references
decomposed by*

orbited by*
related to*

specified by connected by incurs

enables
made

responds to
results in

- located at
causes

mitigates
resolves

(satisfies)
traced from

(verifies)
occurs

Characteristic
(Measure)

specifies
references
specifies

specifies
decomposed by*

related to*
specified by*

specifies
incurs

specifies

enables
results in
specifies

specifies
located at
specifies

causes
mitigates
resolves
specifies

(satisfies)
spacifies

traced from
(verifies)

occurs
specifies

Connection
(Conduit,
Logical)

-
defined protocol by

references
connects to specified by

decomposed by*
joined by*
related to*

incurs
enables

results in
transfers located at

causes
mitigates
resolves

(satisfies)
traced from

(verifies)
occurs

Cost incurred by
incurred by
references

incurred by
incurred by
specified by

incurred by
decomposed by*

related to*

enables
incurred by

results in
incurred by located at

causes
incurred by
mitigates
resolves

incurred by
(satisfies)

traced from
(verifies)

occurs

Decision enabled by
result of

enabled by
references
result of

enabled by
made by

responded by
result of

enabled by
result of

specified by

enabled by
result of

enabled by
incurs

result of

decomposed by*
related to*

enabled by
result of

located at

causes
enabled by

mitigated by
result of
resolves

alternative
enabled by
traced from

result of

date resolved by
decision due

occurs

Input/Output generated by
received by

references - specified by transferred by incurs
enables

results in
decomposed by*

related to*
located at

causes
mitigates
resolves

(satisfies)
traced from

(verifies)
occurs

Location
(Orbital,
Physical,
Logical)

locates locates locates
locates

specified by
locates locates locates locates

decomposed by*
related to*

locates
mitigates

locates
(satisfies)

traced from
(verifies)

occurs

Risk
caused by

mitigated by
resolved by

caused by
mitigated by

references
resolved by

caused by
mitigated by
resolved by

caused by
mitigated by
resolved by
specified by

caused by
mitigated by
resolved by

caused by
incurs

mitigated by
resolved by

caused by
enables

mitigated by
results in

resolved by

caused by
mitigated by
resolved by

located at
mitigated by

caused by*
decomposed by*

related to*
resolved by*

caused by
mitigated by
resolved by

occurs
mitigated by

Statement
(Requirement)

(satisfied by)
traced to

(verified by)

references
(satisified by)

sourced by
traced to

(verified by)

(satisified by)
traced to

(verified by)

(satisified by)
specified by

traced to
(verified by)

(satisified by)
traced to

(verified by)

incurs
(satisified by)

traced to
(verified by)

alternative of
enables

traced to
results in

(satisified by)
traced to

(verified by)

located at
(satisfied by)

traced to
(verified by)

causes
mitigates
resolves

decomposed by*
traced to*
related to*

occurs
(satisified by)
(verified by)

Time occurred by occurred by occurred by
occurred by
specified by

occurred by occurred by
date resolves
decided by
occurred by

occurred by occurred by
occurred by

mitigates

occurred by
(satisfies)
(verifies)

decomposed by*
related to*

decomposed by*
orbited by*
related to*

Diagrams Are Needed for Every Class
 Action Diagram (Mandatory)
 Asset Diagram (Mandatory)
 Spider Diagram (Mandatory)
 Interface Diagrams

• N2 (Assets or Actions)
 Hierarchy Diagrams

• Automatically color coded by class
 Time Diagrams

• Gantt Charts
• Timeline Diagram

 Location Diagrams
• Maps for Earth
• Orbital charts

• Class/Block Definition
Diagram

• Data modeling
• Risk Chart

• Standard risk/opportunity
chart

• Organization Charts
• Showing lines of

communication, as well as
lines of authority

• Pie/Bar/Line Charts
• For cost and performance

• Combined Physical and
Functional Diagram

Action Diagram (Mandatory)

Action A Action B
Action A

Action B

Action C

Condition 1

Condition 2

Action A

Action B

LOOP

Action A
Action C

Range

Range (e.g.)
1 to n (iterate)

Until r < z (loop)

PARALLEL

SEQUENTIAL

SELECTION

SYN
C

O
R

Action C
 (Exit Criteria) LO

O
P

Coordinated by Asset C

No constructs – only
special types of Actions
– ones that enable the
modeling of command
and control/information
assurance to capture
the critical decisions in
your model

Diagram Comparison: SYSML

Source: http://www.mel.nist.gov/msidlibrary/doc/sysmlactivity.pdf

http://www.mel.nist.gov/msidlibrary/doc/sysmlactivity.pdf

LML Action Diagram Captures Functional
and Data Flow

O
R

Which path?

Action in
Parallel

Action

Start End

Trigger
SYN

C
 Input/Output 2

Synchronize
Information

1.2

1.3

1.7

Action
1.1 Optional Action 2 in

Loop

1.6

External Input

External
Output

Input/Output 3

LO
O

P

Exit Criteria

1.5

Optional Action 1
1.4

Input/Output 1

Execution Logic – Concurrency With
Trigger; No Coordination Action

Action A

Trigger: Action A enabled, but must wait to execute; Asset A performs Action A

Action Diagram Timeline

Action A
Duration = x sec

0 sec y + x sec

sync

Action B

coordinated by Asset A

Duration = y sec

y sec

Action B

Trigger

wait

Finish to Start (FS)
between B and A

Asset Diagram (mandatory)
Block diagram
general form

Block diagram using pictures

Spider Diagram (Mandatory for
Traceability)

Shows entities
and relationships

in visual form

LML Translation

 Two types of mapping for tailoring:
• Map names of classes to enable other “schema” models to be used
• Map symbols used (e.g., change from LML Logic to Electrical

Engineering symbols)
• Enable diagram translations (e.g., Action Diagram to IDEF 0)

LML Class DM2 SysML …

Action Activity Activity

Asset Performer Actor

LML
Symbol

Electrical
Engineering

BPMN …

AND

Example: Translation to DM2

DM2 Conceptual Model to LML Schema
Mapping

DM2 Schema Element (Conceptual) LML Equivalent

Activity Action

Capability Action with “Capability” type

Condition Characteristic with “Condition” type

Information/Data Input/Output

Desired Effect Statement with “Desired Effect” type

Guidance Statement with “Guidance” type

Measure Measure

Measure Type Measure Type

Location Location

Project Action with “Project” type

Resource Asset with types for “Materiel,” “Organization,” etc.

Skill Characteristic with “Skill” type

Vision Statement with “Vision” type

How can LML support SoS?

Systems of Systems
Definition*: “An SoS is defined as a set or arrangement of

systems that results when independent and useful systems are
integrated into a larger system that delivers unique capabilities”
SoS’s can be

• Virtual (lack central management and purpose)
• Collaborative (voluntary interaction)
• Acknowledged (independent, with higher level coordination)
• Directed (integrated)

 The common denominator in all the SoS types: systems are
dependent on other systems

*From Systems Engineering Guide for Systems of Systems

How do we capture and manage
dependencies?
 First, we need to identify the relationship between the different

systems
• LML provides a set of relationships between Assets and Actions

(Programs) that can capture this traceability
Assets are related to other Assets
Actions are related to other Actions
Assets perform Actions

• Note the “related to/relates” relationships have an attribute for context
This attribute enables you to identify which Asset is dependent on the other

• If the you want to add another relationship between Assets and/or
Actions, LML encourages extensions for specific domains (e.g., DoDAF
& SysML)

What Next?
We want to establish the relationship between the different

system schedules
• The Time entity can be used to capture specific milestones, which can

then also be related to one another using the related to/relates
relationship

• Visualization suggested is a timeline chart
Timeline charts can be created and compared

• LML also provides another mechanism for time – the duration and start
attributes for Action entities provide a means to capture tasks and
milestones as part of the program process model

Note that the language provides more than one way to capture
and express the necessary information giving the analyst some
flexibility to communicate to a broad audience

Capture other program information

 LML’s ontology provides a means to capture other program
information, such as Artifacts, Statement/Requirements,
Input/Outputs (e.g., deliverables), Risks, Decisions, Location,
and Costs
 This information can be related to each other within and

between programs
Critical information (dependencies) between the programs can

also be related to each other

By capturing all the relevant program information in one place, it is easier to identify
potential areas of concern and resolve them before they become problems

LML Summary

 LML provides a ontological foundation for supporting SoS SE
 LML contains the basic technical and programmatic classes

needed for the lifecycle
 LML defines the Action Diagram to enable better definition of

logic as functional requirements
 LML uses Physical Diagram to provide for abstraction,

instances, and clones, thus simplifying physical models
 LML provides the “80% solution”

• It can be extended to meet specific needs (e.g. adding Question and
Answer classes for a survey tool that feeds information into the
modeling)

For more information

See the LML specification at www.lifecyclemodeling.org
 For implementation see www.innoslate.com
Contact Steve Dam at www.specinnovations.com or

sdam@specinno.com

http://www.lifecyclemodeling.org/
http://www.innoslate.com/
http://www.specinnovations.com/
mailto:sdam@specinno.com

	Lifecycle Modeling Language (LML) and Systems of Systems (SoS)
	Overview
	Why a New Language?
	Complex Systems Implications for Systems Engineering
	Complexity
	How Does SE Typically Respond to Complexity
	More Money is a Problem
	State of Current “Language”
	Why Objects Are Not the Answer
	Popular Software Languages
	So What Do We Do?
	What We Did
	LIFECYCLE MODELING LANGUAGE (LML) OVERVIEW�A language to simplify system design description for the cloud��
	Lifecycle Modeling Language (LML)
	LML Ontology* Overview
	LML’s Simplified Schema
	LML Models
	LML Primary Entities and Relationships for DoDAF Support
	LML Relationships Provide Linkage Needed Between the Classes
	Diagrams Are Needed for Every Class
	Action Diagram (Mandatory)
	Diagram Comparison: SYSML
	LML Action Diagram Captures Functional and Data Flow
	Execution Logic – Concurrency With Trigger; No Coordination Action
	Asset Diagram (mandatory)
	Spider Diagram (Mandatory for Traceability)
	LML Translation
	Example: Translation to DM2
	DM2 Conceptual Model to LML Schema Mapping
	How can LML support SoS?
	Systems of Systems
	How do we capture and manage dependencies?
	What Next?
	Capture other program information
	LML Summary
	For more information

