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Abstract. Based on our experience with defining and evaluating system of systems 
and architectures using agent-based modeling, we describe the steps that we have 
employed in the context of a well-known process for defining system architectures 
and identify which steps of the process capture the unique characteristics of a system 
of systems. We describe a particular method that we developed to automate the 
generation of the communications links needed for executable simulation models 
when evaluating a large architectural design space, and we review model-based 
systems engineering methods that are applicable to specifying systems of systems 
and that support developing executable agent-based simulation models. 

 
Introduction 

The typical reaction of many long-time practitioners of systems engineering after 
hearing about the challenges in systems of systems is to ask, “What is it that I should 
be doing for systems of systems that is different from what I always have done when 
engineering a system?” In this paper, we provide our answer to this question by 

1. relating the practices that we have employed for generating and evaluating 
C2BMC architectures in the context of a well-known process for 
synthesizing system architectures, and  

2. reviewing applicable model-based systems engineering methods such as 
UML and Petri nets that are relevant to specifying architectures for systems 
of  systems and showing how they apply to our C2BMC example.   

The Missile Defense C2BMC System of Systems Problem 
The US Missile Defense Agency is responsible for developing an integrated Ballistic 
Missile Defense System (BMDS), which is a system of systems that links land-, 
sea-, air-, and space-based assets to defend the United States, its friends and allies, 
and its deployed forces from ballistic missile attack. A Command and Control, 
Battle Management, and Communication (C2BMC) capability is a critical set of 
functionalities that link the various individual systems into a system of systems, 
ensuring the highest capability for protection against all types of ballistic missile 
threats in all regions of the world and in all phases of flight. It is an “acknowledged” 
system of systems (Dahmann and Baldwin 2008) in that there are objectives, 
management, funding, and authority for the system of systems; however, systems 



 

  

retain their own management, funding, and authority in parallel with the 
system-of-systems effort. 
We have been developing, refining, and analyzing candidate system-of-systems 
architectures for the BMDS C2BMC capability that employ worldwide, on-demand, 
secure network services that permit global employment of multiple independently 
capable weapon and sensor systems. The architectures are required to operate both 
strategically and regionally within the US force structure and potentially to share 
data and resources with allied forces. 

A Reference Process for Synthesizing an Architecture   
The distinguishing characteristics for systems of systems are operational and 
managerial independence (Maier 1998). This paper focuses on the methods used to 
define operational architectures for systems of systems that are able to operate 
independently when deployed. Managerial independence is the context within which 
the technical methods described in this paper are employed. Those interested in the 
managerial aspects of acquiring and deploying systems of systems should refer to 
Dahmann et al. (2011), which defines a “management architecture” called the wave 
model, and to Acheson et al. (2012), which describes an approach to analyzing the 
management architecture based on the wave model.    
We applied a well-known process for synthesizing system architectures that was 
originally articulated by Levis and Wagenhals (2000) and has been incorporated into 
Buede’s textbook with the addition of a step for defining the allocated architecture 
(2009).  

  
Figure 1. Reference process for synthesizing SoS architectures  

Figure 1 shows the process that we applied, which is a combination of the process 
described by Levis and Wagenhals and by Buede. An overall operational concept for 
the system of systems is defined that captures the mission requirements and usage 
scenarios that are employed to develop a functional architecture, which is a set of 
functions that are arranged to execute in a way that facilitates achieving the mission 
objectives. Available technologies are reviewed to develop a physical architecture, 
which is the collection of physical capabilities that perform sensing, data processing, 
communications, and target engagements, and that are arranged in a communications 



 

  

network. The allocated architecture is the result of placing the requirement to 
execute functional capabilities on the physical components. Multiple possible 
allocated architectures can be defined from a functional and physical architecture. It 
is the primary goal of systems of systems architecting to define feasible SoS 
architectures; to evaluate the ability of the architectures to satisfy mission 
requirements and the resources required to procure and operate the SoS. The 
dynamics model describes the dynamic behavior of the allocated architecture. It is 
the basis for developing an executable model that simulates the behavior of the 
allocated architecture, which is used primarily to obtain the performance and 
resource utilization metrics for the operational SoS. In theory, the executable model 
could also be used for determining resource utilization metrics such as procurement 
and operational costs, procurement schedules, and other SoS-wide measures such as 
complexity; however, in practice separate models are usually developed to obtain 
these metrics. 

Applying the Reference Process to Missile Defense   
A US National Research Council (2012, 132-145) report describes a high-level 
operational concept for missile defense identifies seven systems that participate in 
the missile defense system of systems: command level (national command 
authority), intelligence, surveillance sensors, combatant commander, battle manager, 
fire unit, and tracking and discrimination. Within each of the systems identified by 
the National Research Council, there may be multiple, heterogeneous physical 
systems in their own right such as land-based, airborne, and sea-based interceptors, 
each with their own fire control capabilities, and land-based, airborne, space-based, 
and sea-based sensors that collect tracking and discrimination data. The C2BMC 
capabilities within this system of systems encompass the functionalities listed for the 
battle manager, for tracking and discrimination, and for decision and control portions 
of the fire unit, i.e., selecting assets and committing interceptors. 
Figure 2 shows a high-level functional architecture that we developed for 
implementing C2BMC capabilities that is consistent with the operational concept 
and supports meeting the overall mission to negate hostile threats and minimize 
collateral damage. It shows a flow of information for tracking, discrimination, and 
typing of targets, information for sensor tasking and interceptor engagement, and 
information for kill assessment.   

 
Figure 2. Control and information flow for the functional C2BMC architecture 

derived from the operational concept 



 

  

The entities that we use to define the physical architecture of the C2BMC 
capabilities belong to one of two classes, platforms, and communications links. 
Platforms are defined by their initial location and the trajectory of their location over 
time (in case they have the capability to move), their data processing resources, and 
the communication links by which they are able to interface. The communication 
links that connect the platforms to form the physical architecture are defined by their 
communication protocols (e.g., UDP or TCP) and their capacity or bandwidth. A 
summary of the types of platforms and communication links used in generating 
C2BMC physical architectures is shown in Table 1. 
Table 1. C2BMC Physical Architecture: Platforms and Communication Links 

Class Physical 
Entity Relevant Attributes 

Platform 

• Aircraft 
• Satellite 
• Ground 

Station 
• C2 Node 
• Interceptor 

• Location and Trajectory 
• Processing Resources 
• Interfaces to Communications Links 

Communications 
Link 

• Satellite 
• Wireless 
• Fiber 

• Communication Protocols and 
Capacities 

The functional and physical architectures for the C2BMC system of systems are 
indistinguishable from architectures that would be developed if a systems engineer 
were developing architectures for a C2BMC system that is managed and operated by 
a single entity. It is in defining the allocated architecture that the distinguishing trait 
of operational independence is exhibited.  
Two views provide insight into operational independence: the perspective of a single 
platform and the perspective of the entire set of allocated functional capabilities of 
the system of systems. 

    
Figure 3. Example of options for allocating functions to a platform with a 

tracking sensor 
From the perspective of a single platform, the concept of autonomy level aids in 
characterizing the levels of operational independence that a platform has for a given 



 

  

allocated architecture. Figure 3 shows how a platform with a tracking sensor can 
range from a high level of autonomy to a low level of autonomy. At the highest level 
of autonomy, the platform operates independently with its own functionality for 
sensor tasking (ST), sensing (S), missile tracking (MT), and assessment and 
evaluation (AE). A self-tasking platform receives priorities from the assessment and 
evaluation functionality of other systems. If more than one external system is 
providing an uncoordinated set of priorities to the platform, it is considered to be 
operationally independent; however, if only one system is providing priorities to the 
self-tasking platform, it is not operationally independent. The two types of platforms 
that generate tracks and generate measurements receive commands from external 
systems to direct their sensing and, similar to self-tasking platforms, are 
operationally independent if they receive an uncoordinated set of sensing commands 
from multiple systems.   
From the perspective of the entire set of capabilities, the concept of centralization vs. 
decentralization of functionality is another aid to characterize the level of operational 
independence. In a system of systems, a functional capability can be allocated to 
multiple physical entities with the functionality performed by each physical entity 
being executed according to the inputs (matter, energy, and information) that it 
receives from external entities and any local energy, matter, or information resident 
in the physical entity.  
Table 2, which is adapted from Mane and DeLaurentis (2012), shows an example 
possible allocations of missile tracking, assessment and evaluation, and sensor 
tasking functionality that complete the tracking loop in the functional C2BMC 
architecture presented in Figure 2 to physical architectures that have multiple sensors 
for collecting data and a single command and control (C2) node. In a centralized 
architecture, all functionality is allocated to a single C2 node, and none of the 
sensors is operationally independent of the C2 node. A decentralized architecture has 
all functionality allocated to each of the multiple sensors in the architecture, and all 
of the sensors are operationally independent of the C2 node. For the architecture 
with centralized tracking and prioritization, each sensor may have its own sensor 
tasking or its own missile tracking functionality that would enable it to be 
operationally independent. A central managerial authority could prescribe the sensor 
tasking and missile tracking functionality at each sensor to ensure that operational 
independence would not be present. Similarly, for the architecture with centralized 
tracking, operational independence is determined by the entity that prescribes the 
missile tracking functionality.  

Table 2. Example of Centralized vs. Decentralized Tracking 

 Location of Functionality According to Architecture 
Centralization 

Functions Centralized Centralized Tracking 
and Prioritization 

Centralized 
Tracking Decentralized 

Missile 
Tracking (MT) C2 C2 C2 Sensors 

Assessment and 
Evaluation (AE) C2 C2 Sensors Sensors 

Sensor Tasking 
(ST) C2 Sensors Sensors Sensors 

Sensing (S) Sensors Sensors Sensors Sensors 



 

  

In our dynamics models of the allocated systems of systems architecture, each 
function is modeled as an agent (DeLaurentis 2005). The agents interact as a 
network of multiple independent entities. Agents exhibit their dynamic behavior by 
performing functions allocated to physical platforms and by communicating via the 
links defined for the physical architecture's network. An individual agent, as shown 
in Figure 4 (adapted from Joslyn and Rocha (2000)), has its own initial set of 
objectives and desires, which controls its behavior. It also has an initial set of 
knowledge, beliefs, and information, which may include information about the 
physical properties and energetic state of the platform on which it resides. The agent 
then decides on actions to be taken and executes those actions. The actions may 
transfer matter, energy, or information to the environment, which includes other 
agents that it interacts with, as well as contextual entities such as targets and the 
ambient conditions. The agent receives inputs in the form of matter, energy, and 
information from the environment and updates its knowledge, beliefs, and other 
information, which may indirectly update its objectives and desires.  
The executable model for a C2BMC architecture was implemented using DAF (the 
Discrete Agent Framework, (Mour et al. 2013)). DAF is a MATLAB-based 
framework that provides the underlying infrastructure for agent-based simulation 
that moves messages around and maintains the simulation environment (locations, 
time, etc.). We developed executable MATLAB code for all of our dynamics models 
of the agents to simulate their functionality and operational effects, such as 
computational and communications latency that are a consequence of the physical 
properties of the allocated architecture. 

 
Figure 4. The dynamics model for an agent 

Generating Communication Architectures 
As Maier (1998) pointed out, the architecture for a system of systems is defined by 
the interfaces and for those that exchange information at the interfaces, such as 
C2BMC systems of systems, the communications network describes these interfaces. 
DAF was created as a flexible framework for testing the functionality of agent 
configurations and evaluating the allocation of this functionality in a 



 

  

system-of-systems context, and part of this flexibility comes from defining network 
connections between physical platforms. DAF achieves this goal by placing 
complete control of agent allocation and network connections in the architect's hands 
with explicit definitions of agent arrangements and interconnects. While this 
approach provides the ultimate flexibility, it can create an extra burden on the 
developer to manage communication agents that link functionality across platforms. 
We implemented a model builder in DAF for defining communication networks in 
C2BMC architectures to reduce this burden. 
Designers have to specify the connections for each particular functional allocation of 
C2BMC components. The model builder separates the connections into two parts, a 
physical network part and an agent data path part. The first is specified as a list of 
communication agents that define the point-to-point links available as physical 
assets. The architect then specifies which agents are to be connected, ignoring the 
complexities in the network path. DAF will automatically create the communication 
path between any two agents allowing the developer to ignore network infrastructure 
when defining logical agent-to-agent connections. Previous versions of the model 
builder required an architect to maintain the network links in addition to the 
agent-to-agent connections. This created a bookkeeping burden and required the 
developer to consider independent layers simultaneously to create a functioning 
architecture. Errors in this process were somewhat common and can be difficult to 
trace, and the updated model makes it much easier to successfully create 
architectures.  
The automated process requires a few assumptions and a link allocation algorithm. 
The model builder represents each architecture by a series of architecture design 
variables rather than an explicit list of connections. The only input required from the 
architect for this representation is the specific sensor laydown to be used in an 
architecture. The tool automatically connects the sensor platforms to ground stations, 
based on the assumption that each ground station is connected to only a single type 
of sensor. The agents are then automatically wired together in the correct way and on 
the correct ports based on the architecture variables for the selected architecture. A 
physical path between two logical agents must be created, and the approach taken is 
to use a shortest path algorithm. The distance can be defined in several ways, but the 
assumption made in the implementation is that the least number of network links 
should be traversed to make a connection. An alternative would be to define distance 
as latency in the system, which in the case of C2BMC systems would make routes 
favor fiber connections over lower speed satellite links. The network paths are 
defined in a static route table that is cached at initialization time for speed. Future 
improvements may make this dynamic so that re-routing around congested or 
disabled links becomes a simple process.  
By automating the creation of these architectures for various sensor numbers and 
types, the tool allows for performing more efficient architectural analyses over a 
large design space. For BMDS, we have used the tool to investigate a large range in 
the number of sensors on different platforms across the full spectrum of sensor 
platform autonomy.  

Model-Based Methods Applicable to Specifying Architectures for 
System of Systems  

The specification of architectures for system of systems using model-based systems 
engineering methods should support dynamics models and executable models that 
account for  



 

  

• actions of operationally independent systems that are modeled as agents, and  
• the interactions of concurrent, asynchronous activities undertaken by 

operationally independent systems. 
In this section, we review the key literature on proposed approaches to applying of 
UML (and by extension, SysML) and applying Petri nets to support the goals for 
dynamics modeling and for developing executable models. 
Park, Kim, and Lee (2000) propose a comprehensive approach to specifying 
agent-based modeling using UML 1.1. The have two classes of models, intra-agent 
models and inter-agent models. The intra-agent models include the goal model 
(object model of a goal hierarchy), the belief model (object model of beliefs and 
external message protocols), the plan model (updates beliefs; and determines actions 
to take and messages to send), and the capability model (logic for actions to be taken 
by the agent). The inter-agent models include the agent mobile model (how an agent 
coordinates its actions to perform a task with other agents; it assumes a coordinator 
agent) and the agent communication model (how message exchanged between 
agents including sequence diagram of agent actions and messages). Their example 
that they use to illustrate their approach does not assume complete autonomy among 
the agents nor does it assume concurrency; however, their method is applicable to 
completely autonomous agents and the ability to handle concurrency was addressed 
by the release of UML 2.0.  
Before the release of UML 2.0, several approaches were developed to convert 
specifications of systems from various modeling languages to Petri nets that are 
executable models for simulating the interactions of concurrent, asynchronous 
activities. Peleg, Yeh, and Altman (2002) describe how to map a business-process 
workflow model of a biological system to a Petri net. Wagenhals, Haider, and Levis 
(2003) converted the UML 1.3 specification C4ISR to a colored Petri net.  

 
Figure 5. UML 2.0 extended concurrency model from Quatrani (2005) 

When UML 2.0 was released in July 2005, it used a Petri-like semantics to allow for 
concurrency that include tokens, which are a feature of Petri nets, as shown in Figure 
5. Störrle (2005) provides a detailed description of mapping UML 2.0 activity 
diagrams to colored Petri nets, and Staines (2008) describes how to maps UML 2.0 
activity diagrams to a Fundamental Modeling Concepts (Knöpfel, Gröne, and 
Tabeling 2006) Petri net diagram. Sinclair (2009) applies hierarchical and timed 



 

  

colored Petri nets to modeling and simulation of system of systems and proposes to 
extend UML in a way that highlights its underlying Petri-like features and adds 
explicit constructs for hierarchical and timed colored Petri nets.  
Bauer and Odell (2005, 156) indicate that “UML has no ‘off-the-shelf’ constructs to 
express: goals, agent, groups, multicasting, generative functions, such as cloning, 
birthing, reproduction, parasitism and symbiosis, emergent phenomena, and many 
other nature-based constructs that are helpful for representing agent structures.” 
Nonetheless, there are many examples of using UML to define goals, agent, groups, 
and multicasting that can be followed to specify the systems within a system of 
systems as agents, and there is adequate guidance on modeling the dynamics of 
concurrent, asynchronous activities using UML activity diagrams, and converting 
them to Petri nets to create an executable model.   

Specifying C2BMC Tracking Architectures  
Figure 6 uses a UML activity diagram to specify a completely centralized tracking 
architecture that has two sensors (S1 and S2) and allocates missile tracking (MT), 
assessment and evaluation (AE), and sensor tracking (ST) to the C2 node. The 
diagram specifies that each platform (S1, S2, and C2) iteratively executes its 
assigned functionality and that the inputs are <<optional>>, i.e., performing an 
iteration proceeds according each platform’s internal schedule rather than waiting 
for external inputs to trigger an iteration. Inputs that arrive during an iteration are 
processed as inputs in the subsequent scheduled iteration.  

  
Figure 6. UML Activity Diagram for Completely Centralized Tracking 

Architecture 
Figure 7 follows the approach of Park, Kim, and Lee (2000) to specify the 
intra-agent dynamics model of a generic agent. It defines functions that  

• update the knowledge, beliefs, and information of the agent using inputs 
from its environment;  

• decide on actions that achieve its objectives and desires;  
• and take action that produces outputs that affect its environment. 



 

  

  
Figure 7 UML Activity Diagram for Generic Agent 

Figure 8 applies the pattern from Figure 7 to specify the activity diagram for a 
missile-tracking agent. Missile tracking incorporates sensor measurements into its 
tracking database and makes a series of decisions based on parameters that specify 
its objectives. The series of decisions conclude with a decision on which tracks 
(labeled as “Firm Tracks” in the diagram) it will forward to assessment and 
evaluation. This pattern also was used to specify AE, ST, and sensor measurement 
agents. 

  
Figure 8. UML Activity Diagram for a Missile Tracking Agent (MT) 

Figure 9 specifies an alternative tracking architecture that allocates only missile 
tracking to the C2 node and allocates separate instances of assessment and 
evaluation (AE1 and AE2) and sensor tasking (ST1 and ST2) to each sensor. The 
feedback from the C2 node to the sensors is specified as track messages generated 
by missile tracking. If this feedback were not specified, each sensor would be 
allowed more autonomy and would consider only the measurements generated 
locally to make its AE and ST decisions.   



 

  

  
Figure 9. Activity Diagram for Centralized Missile Tracking 

Conclusions and Future Directions 
Synthesizing and specifying architectures for system of systems can use well-known 
processes and methods for model-based systems engineering with some adaptations. 
These adaptations are necessary to capture the operational independence of the 
constituent systems that derives from the autonomous, concurrent, asynchronous 
actions of the constituent systems. In our experience, the process for synthesizing 
architectures can follow the same top-level processes used for centrally operated 
systems. We believe that the dynamic modeling of a system of systems as a 
collection of autonomous agents is well suited for capturing the emergent behavior 
that derives from complex interactions of systems of systems.  
Because the architecture of a system of systems is essentially its communications 
network, it is wise to develop methods that ease the burden of manually synthesizing 
network architectures when generating a large design space of allocated 
architectures.  
UML 2.0 (and by extension, SysML) is able to specify the concurrent, asynchronous 
actions that give rise to the complex interactions of systems of systems. A pattern for 
agent-based models for the dynamics can be created in UML, and it can be used to 
specify the independently operating constituent systems within a system of systems. 
Due to its Petri-like syntax, UML 2.0 provides a specification language that allows 
for developing executable Petri nets for simulating the behaviors and exploring the 
design space for a system-of-systems architecture. In the future, we will evaluate 
Petri net tools that can enhance our toolset that we use to synthesize architectures. 
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