
24th Annual INCOSE International Symposium (IS2014)
Las Vegas, NV, June 30 – July 3, 2014

Synthesizing and Specifying Architectures for
System of Systems

C. Robert Kenley, Timothy M. Dannenhoffer, Paul C. Wood, and Daniel A. DeLaurentis
Purdue University

School of Aeronautics and Astronautics
Center for Integrated Systems in Aerospace

Neil Armstrong Hall of Engineering
701 W. Stadium Ave., West Lafayette, IN, 47907-2045

kenley, tdannenh, pwood, and ddelaure@purdue.edu

Copyright © 2014 by C. Robert Kenley, Timothy M. Dannenhoffer, Paul Wood, and Daniel A. DeLaurentis. Published and used by
INCOSE with permission.

Abstract. Based on our experience with defining and evaluating system of systems
and architectures using agent-based modeling, we describe the steps that we have
employed in the context of a well-known process for defining system architectures
and identify which steps of the process capture the unique characteristics of a system
of systems. We describe a particular method that we developed to automate the
generation of the communications links needed for executable simulation models
when evaluating a large architectural design space, and we review model-based
systems engineering methods that are applicable to specifying systems of systems
and that support developing executable agent-based simulation models.

Introduction

The typical reaction of many long-time practitioners of systems engineering after
hearing about the challenges in systems of systems is to ask, “What is it that I should
be doing for systems of systems that is different from what I always have done when
engineering a system?” In this paper, we provide our answer to this question by

1. relating the practices that we have employed for generating and evaluating
C2BMC architectures in the context of a well-known process for
synthesizing system architectures, and

2. reviewing applicable model-based systems engineering methods such as
UML and Petri nets that are relevant to specifying architectures for systems
of systems and showing how they apply to our C2BMC example.

The Missile Defense C2BMC System of Systems Problem
The US Missile Defense Agency is responsible for developing an integrated Ballistic
Missile Defense System (BMDS), which is a system of systems that links land-,
sea-, air-, and space-based assets to defend the United States, its friends and allies,
and its deployed forces from ballistic missile attack. A Command and Control,
Battle Management, and Communication (C2BMC) capability is a critical set of
functionalities that link the various individual systems into a system of systems,
ensuring the highest capability for protection against all types of ballistic missile
threats in all regions of the world and in all phases of flight. It is an “acknowledged”
system of systems (Dahmann and Baldwin 2008) in that there are objectives,
management, funding, and authority for the system of systems; however, systems

retain their own management, funding, and authority in parallel with the
system-of-systems effort.
We have been developing, refining, and analyzing candidate system-of-systems
architectures for the BMDS C2BMC capability that employ worldwide, on-demand,
secure network services that permit global employment of multiple independently
capable weapon and sensor systems. The architectures are required to operate both
strategically and regionally within the US force structure and potentially to share
data and resources with allied forces.

A Reference Process for Synthesizing an Architecture
The distinguishing characteristics for systems of systems are operational and
managerial independence (Maier 1998). This paper focuses on the methods used to
define operational architectures for systems of systems that are able to operate
independently when deployed. Managerial independence is the context within which
the technical methods described in this paper are employed. Those interested in the
managerial aspects of acquiring and deploying systems of systems should refer to
Dahmann et al. (2011), which defines a “management architecture” called the wave
model, and to Acheson et al. (2012), which describes an approach to analyzing the
management architecture based on the wave model.
We applied a well-known process for synthesizing system architectures that was
originally articulated by Levis and Wagenhals (2000) and has been incorporated into
Buede’s textbook with the addition of a step for defining the allocated architecture
(2009).

Figure 1. Reference process for synthesizing SoS architectures

Figure 1 shows the process that we applied, which is a combination of the process
described by Levis and Wagenhals and by Buede. An overall operational concept for
the system of systems is defined that captures the mission requirements and usage
scenarios that are employed to develop a functional architecture, which is a set of
functions that are arranged to execute in a way that facilitates achieving the mission
objectives. Available technologies are reviewed to develop a physical architecture,
which is the collection of physical capabilities that perform sensing, data processing,
communications, and target engagements, and that are arranged in a communications

network. The allocated architecture is the result of placing the requirement to
execute functional capabilities on the physical components. Multiple possible
allocated architectures can be defined from a functional and physical architecture. It
is the primary goal of systems of systems architecting to define feasible SoS
architectures; to evaluate the ability of the architectures to satisfy mission
requirements and the resources required to procure and operate the SoS. The
dynamics model describes the dynamic behavior of the allocated architecture. It is
the basis for developing an executable model that simulates the behavior of the
allocated architecture, which is used primarily to obtain the performance and
resource utilization metrics for the operational SoS. In theory, the executable model
could also be used for determining resource utilization metrics such as procurement
and operational costs, procurement schedules, and other SoS-wide measures such as
complexity; however, in practice separate models are usually developed to obtain
these metrics.

Applying the Reference Process to Missile Defense
A US National Research Council (2012, 132-145) report describes a high-level
operational concept for missile defense identifies seven systems that participate in
the missile defense system of systems: command level (national command
authority), intelligence, surveillance sensors, combatant commander, battle manager,
fire unit, and tracking and discrimination. Within each of the systems identified by
the National Research Council, there may be multiple, heterogeneous physical
systems in their own right such as land-based, airborne, and sea-based interceptors,
each with their own fire control capabilities, and land-based, airborne, space-based,
and sea-based sensors that collect tracking and discrimination data. The C2BMC
capabilities within this system of systems encompass the functionalities listed for the
battle manager, for tracking and discrimination, and for decision and control portions
of the fire unit, i.e., selecting assets and committing interceptors.
Figure 2 shows a high-level functional architecture that we developed for
implementing C2BMC capabilities that is consistent with the operational concept
and supports meeting the overall mission to negate hostile threats and minimize
collateral damage. It shows a flow of information for tracking, discrimination, and
typing of targets, information for sensor tasking and interceptor engagement, and
information for kill assessment.

Figure 2. Control and information flow for the functional C2BMC architecture

derived from the operational concept

The entities that we use to define the physical architecture of the C2BMC
capabilities belong to one of two classes, platforms, and communications links.
Platforms are defined by their initial location and the trajectory of their location over
time (in case they have the capability to move), their data processing resources, and
the communication links by which they are able to interface. The communication
links that connect the platforms to form the physical architecture are defined by their
communication protocols (e.g., UDP or TCP) and their capacity or bandwidth. A
summary of the types of platforms and communication links used in generating
C2BMC physical architectures is shown in Table 1.
Table 1. C2BMC Physical Architecture: Platforms and Communication Links

Class Physical
Entity Relevant Attributes

Platform

• Aircraft
• Satellite
• Ground

Station
• C2 Node
• Interceptor

• Location and Trajectory
• Processing Resources
• Interfaces to Communications Links

Communications
Link

• Satellite
• Wireless
• Fiber

• Communication Protocols and
Capacities

The functional and physical architectures for the C2BMC system of systems are
indistinguishable from architectures that would be developed if a systems engineer
were developing architectures for a C2BMC system that is managed and operated by
a single entity. It is in defining the allocated architecture that the distinguishing trait
of operational independence is exhibited.
Two views provide insight into operational independence: the perspective of a single
platform and the perspective of the entire set of allocated functional capabilities of
the system of systems.

Figure 3. Example of options for allocating functions to a platform with a

tracking sensor
From the perspective of a single platform, the concept of autonomy level aids in
characterizing the levels of operational independence that a platform has for a given

allocated architecture. Figure 3 shows how a platform with a tracking sensor can
range from a high level of autonomy to a low level of autonomy. At the highest level
of autonomy, the platform operates independently with its own functionality for
sensor tasking (ST), sensing (S), missile tracking (MT), and assessment and
evaluation (AE). A self-tasking platform receives priorities from the assessment and
evaluation functionality of other systems. If more than one external system is
providing an uncoordinated set of priorities to the platform, it is considered to be
operationally independent; however, if only one system is providing priorities to the
self-tasking platform, it is not operationally independent. The two types of platforms
that generate tracks and generate measurements receive commands from external
systems to direct their sensing and, similar to self-tasking platforms, are
operationally independent if they receive an uncoordinated set of sensing commands
from multiple systems.
From the perspective of the entire set of capabilities, the concept of centralization vs.
decentralization of functionality is another aid to characterize the level of operational
independence. In a system of systems, a functional capability can be allocated to
multiple physical entities with the functionality performed by each physical entity
being executed according to the inputs (matter, energy, and information) that it
receives from external entities and any local energy, matter, or information resident
in the physical entity.
Table 2, which is adapted from Mane and DeLaurentis (2012), shows an example
possible allocations of missile tracking, assessment and evaluation, and sensor
tasking functionality that complete the tracking loop in the functional C2BMC
architecture presented in Figure 2 to physical architectures that have multiple sensors
for collecting data and a single command and control (C2) node. In a centralized
architecture, all functionality is allocated to a single C2 node, and none of the
sensors is operationally independent of the C2 node. A decentralized architecture has
all functionality allocated to each of the multiple sensors in the architecture, and all
of the sensors are operationally independent of the C2 node. For the architecture
with centralized tracking and prioritization, each sensor may have its own sensor
tasking or its own missile tracking functionality that would enable it to be
operationally independent. A central managerial authority could prescribe the sensor
tasking and missile tracking functionality at each sensor to ensure that operational
independence would not be present. Similarly, for the architecture with centralized
tracking, operational independence is determined by the entity that prescribes the
missile tracking functionality.

Table 2. Example of Centralized vs. Decentralized Tracking

 Location of Functionality According to Architecture
Centralization

Functions Centralized Centralized Tracking
and Prioritization

Centralized
Tracking Decentralized

Missile
Tracking (MT) C2 C2 C2 Sensors

Assessment and
Evaluation (AE) C2 C2 Sensors Sensors

Sensor Tasking
(ST) C2 Sensors Sensors Sensors

Sensing (S) Sensors Sensors Sensors Sensors

In our dynamics models of the allocated systems of systems architecture, each
function is modeled as an agent (DeLaurentis 2005). The agents interact as a
network of multiple independent entities. Agents exhibit their dynamic behavior by
performing functions allocated to physical platforms and by communicating via the
links defined for the physical architecture's network. An individual agent, as shown
in Figure 4 (adapted from Joslyn and Rocha (2000)), has its own initial set of
objectives and desires, which controls its behavior. It also has an initial set of
knowledge, beliefs, and information, which may include information about the
physical properties and energetic state of the platform on which it resides. The agent
then decides on actions to be taken and executes those actions. The actions may
transfer matter, energy, or information to the environment, which includes other
agents that it interacts with, as well as contextual entities such as targets and the
ambient conditions. The agent receives inputs in the form of matter, energy, and
information from the environment and updates its knowledge, beliefs, and other
information, which may indirectly update its objectives and desires.
The executable model for a C2BMC architecture was implemented using DAF (the
Discrete Agent Framework, (Mour et al. 2013)). DAF is a MATLAB-based
framework that provides the underlying infrastructure for agent-based simulation
that moves messages around and maintains the simulation environment (locations,
time, etc.). We developed executable MATLAB code for all of our dynamics models
of the agents to simulate their functionality and operational effects, such as
computational and communications latency that are a consequence of the physical
properties of the allocated architecture.

Figure 4. The dynamics model for an agent

Generating Communication Architectures
As Maier (1998) pointed out, the architecture for a system of systems is defined by
the interfaces and for those that exchange information at the interfaces, such as
C2BMC systems of systems, the communications network describes these interfaces.
DAF was created as a flexible framework for testing the functionality of agent
configurations and evaluating the allocation of this functionality in a

system-of-systems context, and part of this flexibility comes from defining network
connections between physical platforms. DAF achieves this goal by placing
complete control of agent allocation and network connections in the architect's hands
with explicit definitions of agent arrangements and interconnects. While this
approach provides the ultimate flexibility, it can create an extra burden on the
developer to manage communication agents that link functionality across platforms.
We implemented a model builder in DAF for defining communication networks in
C2BMC architectures to reduce this burden.
Designers have to specify the connections for each particular functional allocation of
C2BMC components. The model builder separates the connections into two parts, a
physical network part and an agent data path part. The first is specified as a list of
communication agents that define the point-to-point links available as physical
assets. The architect then specifies which agents are to be connected, ignoring the
complexities in the network path. DAF will automatically create the communication
path between any two agents allowing the developer to ignore network infrastructure
when defining logical agent-to-agent connections. Previous versions of the model
builder required an architect to maintain the network links in addition to the
agent-to-agent connections. This created a bookkeeping burden and required the
developer to consider independent layers simultaneously to create a functioning
architecture. Errors in this process were somewhat common and can be difficult to
trace, and the updated model makes it much easier to successfully create
architectures.
The automated process requires a few assumptions and a link allocation algorithm.
The model builder represents each architecture by a series of architecture design
variables rather than an explicit list of connections. The only input required from the
architect for this representation is the specific sensor laydown to be used in an
architecture. The tool automatically connects the sensor platforms to ground stations,
based on the assumption that each ground station is connected to only a single type
of sensor. The agents are then automatically wired together in the correct way and on
the correct ports based on the architecture variables for the selected architecture. A
physical path between two logical agents must be created, and the approach taken is
to use a shortest path algorithm. The distance can be defined in several ways, but the
assumption made in the implementation is that the least number of network links
should be traversed to make a connection. An alternative would be to define distance
as latency in the system, which in the case of C2BMC systems would make routes
favor fiber connections over lower speed satellite links. The network paths are
defined in a static route table that is cached at initialization time for speed. Future
improvements may make this dynamic so that re-routing around congested or
disabled links becomes a simple process.
By automating the creation of these architectures for various sensor numbers and
types, the tool allows for performing more efficient architectural analyses over a
large design space. For BMDS, we have used the tool to investigate a large range in
the number of sensors on different platforms across the full spectrum of sensor
platform autonomy.

Model-Based Methods Applicable to Specifying Architectures for
System of Systems

The specification of architectures for system of systems using model-based systems
engineering methods should support dynamics models and executable models that
account for

• actions of operationally independent systems that are modeled as agents, and
• the interactions of concurrent, asynchronous activities undertaken by

operationally independent systems.
In this section, we review the key literature on proposed approaches to applying of
UML (and by extension, SysML) and applying Petri nets to support the goals for
dynamics modeling and for developing executable models.
Park, Kim, and Lee (2000) propose a comprehensive approach to specifying
agent-based modeling using UML 1.1. The have two classes of models, intra-agent
models and inter-agent models. The intra-agent models include the goal model
(object model of a goal hierarchy), the belief model (object model of beliefs and
external message protocols), the plan model (updates beliefs; and determines actions
to take and messages to send), and the capability model (logic for actions to be taken
by the agent). The inter-agent models include the agent mobile model (how an agent
coordinates its actions to perform a task with other agents; it assumes a coordinator
agent) and the agent communication model (how message exchanged between
agents including sequence diagram of agent actions and messages). Their example
that they use to illustrate their approach does not assume complete autonomy among
the agents nor does it assume concurrency; however, their method is applicable to
completely autonomous agents and the ability to handle concurrency was addressed
by the release of UML 2.0.
Before the release of UML 2.0, several approaches were developed to convert
specifications of systems from various modeling languages to Petri nets that are
executable models for simulating the interactions of concurrent, asynchronous
activities. Peleg, Yeh, and Altman (2002) describe how to map a business-process
workflow model of a biological system to a Petri net. Wagenhals, Haider, and Levis
(2003) converted the UML 1.3 specification C4ISR to a colored Petri net.

Figure 5. UML 2.0 extended concurrency model from Quatrani (2005)

When UML 2.0 was released in July 2005, it used a Petri-like semantics to allow for
concurrency that include tokens, which are a feature of Petri nets, as shown in Figure
5. Störrle (2005) provides a detailed description of mapping UML 2.0 activity
diagrams to colored Petri nets, and Staines (2008) describes how to maps UML 2.0
activity diagrams to a Fundamental Modeling Concepts (Knöpfel, Gröne, and
Tabeling 2006) Petri net diagram. Sinclair (2009) applies hierarchical and timed

colored Petri nets to modeling and simulation of system of systems and proposes to
extend UML in a way that highlights its underlying Petri-like features and adds
explicit constructs for hierarchical and timed colored Petri nets.
Bauer and Odell (2005, 156) indicate that “UML has no ‘off-the-shelf’ constructs to
express: goals, agent, groups, multicasting, generative functions, such as cloning,
birthing, reproduction, parasitism and symbiosis, emergent phenomena, and many
other nature-based constructs that are helpful for representing agent structures.”
Nonetheless, there are many examples of using UML to define goals, agent, groups,
and multicasting that can be followed to specify the systems within a system of
systems as agents, and there is adequate guidance on modeling the dynamics of
concurrent, asynchronous activities using UML activity diagrams, and converting
them to Petri nets to create an executable model.

Specifying C2BMC Tracking Architectures
Figure 6 uses a UML activity diagram to specify a completely centralized tracking
architecture that has two sensors (S1 and S2) and allocates missile tracking (MT),
assessment and evaluation (AE), and sensor tracking (ST) to the C2 node. The
diagram specifies that each platform (S1, S2, and C2) iteratively executes its
assigned functionality and that the inputs are <<optional>>, i.e., performing an
iteration proceeds according each platform’s internal schedule rather than waiting
for external inputs to trigger an iteration. Inputs that arrive during an iteration are
processed as inputs in the subsequent scheduled iteration.

Figure 6. UML Activity Diagram for Completely Centralized Tracking

Architecture
Figure 7 follows the approach of Park, Kim, and Lee (2000) to specify the
intra-agent dynamics model of a generic agent. It defines functions that

• update the knowledge, beliefs, and information of the agent using inputs
from its environment;

• decide on actions that achieve its objectives and desires;
• and take action that produces outputs that affect its environment.

Figure 7 UML Activity Diagram for Generic Agent

Figure 8 applies the pattern from Figure 7 to specify the activity diagram for a
missile-tracking agent. Missile tracking incorporates sensor measurements into its
tracking database and makes a series of decisions based on parameters that specify
its objectives. The series of decisions conclude with a decision on which tracks
(labeled as “Firm Tracks” in the diagram) it will forward to assessment and
evaluation. This pattern also was used to specify AE, ST, and sensor measurement
agents.

Figure 8. UML Activity Diagram for a Missile Tracking Agent (MT)

Figure 9 specifies an alternative tracking architecture that allocates only missile
tracking to the C2 node and allocates separate instances of assessment and
evaluation (AE1 and AE2) and sensor tasking (ST1 and ST2) to each sensor. The
feedback from the C2 node to the sensors is specified as track messages generated
by missile tracking. If this feedback were not specified, each sensor would be
allowed more autonomy and would consider only the measurements generated
locally to make its AE and ST decisions.

Figure 9. Activity Diagram for Centralized Missile Tracking

Conclusions and Future Directions
Synthesizing and specifying architectures for system of systems can use well-known
processes and methods for model-based systems engineering with some adaptations.
These adaptations are necessary to capture the operational independence of the
constituent systems that derives from the autonomous, concurrent, asynchronous
actions of the constituent systems. In our experience, the process for synthesizing
architectures can follow the same top-level processes used for centrally operated
systems. We believe that the dynamic modeling of a system of systems as a
collection of autonomous agents is well suited for capturing the emergent behavior
that derives from complex interactions of systems of systems.
Because the architecture of a system of systems is essentially its communications
network, it is wise to develop methods that ease the burden of manually synthesizing
network architectures when generating a large design space of allocated
architectures.
UML 2.0 (and by extension, SysML) is able to specify the concurrent, asynchronous
actions that give rise to the complex interactions of systems of systems. A pattern for
agent-based models for the dynamics can be created in UML, and it can be used to
specify the independently operating constituent systems within a system of systems.
Due to its Petri-like syntax, UML 2.0 provides a specification language that allows
for developing executable Petri nets for simulating the behaviors and exploring the
design space for a system-of-systems architecture. In the future, we will evaluate
Petri net tools that can enhance our toolset that we use to synthesize architectures.

Acknowledgement
This publication was developed under work supported by the US Missile Defense
Agency (MDA) under contract No. HQ0147-10-C-6001. It has been reviewed by
MDA and approved for public release (13-MDA-7638, 14 December 13). The views
and conclusions contained in this document are those of the authors and should not
be interpreted as necessarily representing the official policies, either expressed or

implied, of the US Missile Defense Agency. The US Missile Defense Agency does
not endorse any products or commercial services mentioned in this publication.

References
Acheson, Paulette, Louis Pape, Cihan Dagli, Nil Kilicay-Ergin, John Columbi, and Khaled

Haris. 2012. "Understanding System of Systems Development Using an Agent- Based
Wave Model." Procedia Computer Science no. 12 (0):21-30. doi:
http://dx.doi.org/10.1016/j.procs.2012.09.024.

Buede, Dennis M. 2009. The engineering design of systems: models and methods. Hoboken,
US-NJ: Wiley.

Dahmann, J. S., and K. J. Baldwin. 2008. Understanding the Current State of US Defense
Systems of Systems and the Implications for Systems Engineering. Paper read at
Systems Conference, 2008 2nd Annual IEEE, 7-10 April 2008.

Dahmann, Judith, George Rebovich, JoAnn Lane, Ralph Lowry, and Kristen Baldwin. 2011.
An Implementers’ View of Systems Engineering for Systems of Systems. Paper read
at Proceedings of IEEE International Systems Conference, at Montreal, Quebec.

DeLaurentis, Daniel 2005. "Understanding Transportation as a System-of-Systems Design
Problem." In 43rd AIAA Aerospace Sciences Meeting and Exhibit. American Institute
of Aeronautics and Astronautics.

Joslyn, Cliff, and Luis M Rocha. 2000. Towards semiotic agent-based models of
socio-technical organizations. Paper read at AI, Simulation and Planning in High
Autonomy Systems (AIS 2000) Conference, at Tucson, US-AZ.

Knöpfel, Andreas, Bernhard Gröne, and Peter Tabeling. 2006. Fundamental modeling
concepts: effective communication of IT systems. Hoboken, US-NJ: J. Wiley & Sons.

Levis, Alexander H., and Lee W. Wagenhals. 2000. "C4ISR architectures: I. Developing a
process for C4ISR architecture design." Systems Engineering no. 3 (4):225-247. doi:
10.1002/1520-6858(2000)3:4<225::AID-SYS4>3.0.CO;2-#.

Maier, Mark W. 1998. "Architecting principles for systems-of-systems." Systems Engineering
no. 1 (4):267-284. doi: 10.1002/(sici)1520-6858(1998)1:4<267::aid-sys3>3.0.co;2-d.

Mane, Muharrem, and Daniel DeLaurentis. 2012. Sensor Platform Management Strategies in
a Multi-Threat Environment. Paper read at Infotech@Aerospace 2012, 19 - 21 June at
Garden Grove, California.

Mour, Ankur, C. Robert Kenley, Navindran Davendralingam, and Daniel DeLaurentis. 2013.
Agent-Based Modeling for Systems of Systems. Paper read at 23nd Annual
International Symposium of the International Council of Systems Engineering, at
Philadelphia, US-PA.

National Research Council. 2012. Making Sense of Ballistic Missile Defense: An Assessment
of Concepts and Systems for U.S. Boost-Phase Missile Defense in Comparison to
Other Alternatives. The National Academies Press.

Park, Sooyong, Jintae Kim, and Seungyun Lee. 2000. "Agent-oriented software modeling
with UML approach." IEICE TRANSACTIONS on Information and Systems no. 83
(8):1631-1641.

Peleg, Mor, Iwei Yeh, and Russ B. Altman. 2002. "Modelling biological processes using
workflow and Petri Net models." Bioinformatics no. 18 (6):825-837. doi:
10.1093/bioinformatics/18.6.825.

Quatrani, Terry. 2005. Introduction to UML 2.0. Paper read at MDA, SOA, and Web
Services Workshop, March 21-24, at Orlando, US-FL.

Sinclair, Kirsten. 2009. The Impact of Petri Nets on System-of-Systems Engineering, Durham
University.

Staines, T. S. 2008. Intuitive Mapping of UML 2 Activity Diagrams into Fundamental
Modeling Concept Petri Net Diagrams and Colored Petri Nets. Paper read at 15th
Annual IEEE International Conference and Workshop on the Engineering of
Computer Based Systems.

Störrle, Harald. 2005. "Semantics and Verification of Data Flow in UML 2.0 Activities."
Electronic Notes in Theoretical Computer Science no. 127 (4):35-52. doi:
http://dx.doi.org/10.1016/j.entcs.2004.08.046.

Wagenhals, Lee W., Sajjad Haider, and Alexander H. Levis. 2003. "Synthesizing executable
models of object oriented architectures." Systems Engineering no. 6 (4):266-300. doi:
10.1002/sys.10049.

Biographies
C. Robert Kenley is a Research Scientist in Purdue’s School of Aeronautics and
Astronautics in West Lafayette, IN (US). He has over thirty years’ experience in
industry, academia, and government as a practitioner, consultant, and researcher in
systems engineering. He has published papers on systems requirements, technology
readiness assessment and forecasting, Bayes nets, applied meteorology, and the
impacts of nuclear power plants on employment.
Timothy Dannenhoffer is a Graduate Research Assistant in Purdue's School of
Aeronautics and Astronautics. He is a recent graduate from the North Carolina State
University in Raleigh, NC (US) where he completed his Bachelor's in Aerospace
Engineering and Applied Mathematics. He is currently a member of the Center for
Integrated Systems in Aerospace and the System-of-Systems Laboratory. His
primary research interests are in the areas of agent-based modeling, design space
exploration, and multidisciplinary optimization.

Paul C. Wood is a Graduate Research Assistant in Purdue’s School of Electrical and
Computer Engineering. He graduated from Tennessee Technological University in
Cookeville, TN (US) with a Bachelor’s in Electrical Engineering with a focus in
digital systems. He is currently a member of the Dependable Computing Systems
Laboratory (DCSL) and the Center for Education and Research in Information
Assurance and Security (CERIAS). His research interests are in the areas of
modeling and simulation for agent-based systems, dependable networks and
systems, and information assurance.
Daniel DeLaurentis is an Associate Professor in Purdue’s School of Aeronautics and
Astronautics. He leads Purdue's Center for Integrated Systems in Aerospace and its
largest recent project with the Missile Defense Agency's Enhanced C2BMC program
developing agent-based modeling and simulation for development of advanced battle
management architectures. His primary research interests are in the areas of problem
formulation, modeling and robust system design and control methods for aerospace
systems and systems of systems. This includes agent-based modeling, network
theory, optimization, and aerospace vehicle modeling. His research is conducted
under grants from NASA, FAA, Navy, the DoD Systems Engineering Research
Center UARC, and the Missile Defense Agency.

