SoSECIE Webinar

Welcome to the 2020 System of Systems Engineering Collaborators Information Exchange (SoSECIE)

We will start at 11AM Eastern Time Skype Meeting +1 (703) 983-2020, 46013573# You can download today's presentation from the SoSECIE Website: <u>https://mitre.tahoe.appsembler.com/blog</u> To add/remove yourself from the email list or suggest a future topic or speaker, send an email to sosecie@mitre.org

NDIA System of Systems SE Committee

Mission

- To provide a forum where government, industry, and academia can share lessons learned, promote best practices, address issues, and advocate systems engineering for Systems of Systems (SoS)
- To identify successful strategies for applying systems engineering principles to systems engineering of SoS

Operating Practices

 Face to face and virtual SoS Committee meetings are held in conjunction with NDIA SE Division meetings that occur in February, April, June, and August

NDIA SE Division SoS Committee Industry Chairs:

Mr. Rick Poel, Boeing

Ms. Jennie Horne, Raytheon

OSD Liaison:

Dr. Judith Dahmann, MITRE

Simple Rules of Engagement

- I have muted all participant lines for this introduction and the briefing.
- If you need to contact me during the briefing, send me an e-mail at sosecie@mitre.org.
- Download the presentation so you can follow along on your own
- We will hold all questions until the end:
 - I will start with questions submitted online via the CHAT window in Skype.
 - I will then take questions via telephone; State your name, organization, and question clearly.
- If a question requires more discussion, the speaker(s) contact info is in the brief.

Disclaimer

- MITRE and the NDIA makes no claims, promises or guarantees about the accuracy, completeness or adequacy of the contents of this presentation and expressly disclaims liability for errors and omissions in its contents.
- No warranty of any kind, implied, expressed or statutory, including but not limited to the warranties of non-infringement of third party rights, title, merchantability, fitness for a particular purpose and freedom from computer virus, is given with respect to the contents of this presentation or its hyperlinks to other Internet resources.
- Reference in any presentation to any specific commercial products, processes, or services, or the use of any trade, firm or corporation name is for the information and convenience of the participants and subscribers, and does not constitute endorsement, recommendation, or favoring of any individual company, agency, or organizational entity.

2020-2021 System of Systems Engineering Collaborators Information Exchange Webinars Sponsored by MITRE and NDIA SE Division

March 10, 2020 Analysis of Interoperability to Support Mission-Oriented SoS Dr. Ronald Giachetti

March 24, 2020 Extending the DoD Digital Engineering Strategy to Missions, Systems of Systems, and Portfolios Ms. Philomena Zimmerman

April 7, 2020

Challenges for Systems of Systems / Mission Engineering in a Space Acquisition Environment Lt Col Benjamin Bennett

April 21, 2020

Mission Engineering, Systems Engineering and Systems of Systems Engineering Dr. Andreas Tolk

May 5, 2020

New Digital Engineering Enabled Systems and Mission Engineering Performance Measure Dr. Ed Kraft

June 2, 2020

SERC: Methods to Evaluate Cost/Technical Risk and Opportunity Thomas McDermott and Cody Fleming

July 28, 2020

Addressing Mission Engineering from a Lead Systems Integration Perspective Dr. Warren Vaneman

Ronald E. Giachetti, Ph.D.

Professor and Chair Systems Engineering Naval Postgraduate School Monterey, CA USA regiache@nps.edu

NAVAL Postgraduate School

March 4, 2020

Apply systems engineering processes and knowledge to the design of missions

A mission-level system-of-system (SoS) is an acknowledged SoS:

- SoS has requirements, management, and resources
- Constituent systems are NOT subordinate to the SoS

Illustrative Mission-Oriented SoS

ASW **Hold at Risk** – patrol "choke points" to detect adversary submarines

Constituent Systems:

- 1. Submarine
- 2. UUVs
- 3. Underwater Docking Station
- 4. Sensor Network

Source: R.W. Button, J. Kamp, T.B. Curtin, J. Dryden, *Unmanned Underseas Vehicles*, RAND 2009.

Ronald E. Giachetti March 4, 2020

A measure of the degree to which various systems are able to operate together to achieve a common goal.

Operational Interoperability

Coordination of the activities and performers conducting the mission

Technical Interoperability

The ability of systems to exchange data and resources

Many interoperability measures such as the Levels of Information Systems (LISI) model, which assign numbers to interoperability in an ordinal or interval scale

Such global measures of system interoperability do not provide any **guidance** on what to do to improve interoperability, nor do they **inform** decision makers whether systems will interoperate adequately for any particular mission

We seek to model and analyze interoperability at a greater level of granularity to specify interoperability requirements in mission-oriented SoS – we take a SoS program manager's perspective

Ronald E. Giachetti March 4, 2020

- Model-Based Systems Engineering (MBSE) approach
 - Specify mission-oriented SoS architecture in models
 - Requirements captured in architectural models
 - Analyze Operational Interoperability
 - Analyze Technical Interoperability

Interoperability Analysis Method (IAM)

- 1. Mission Interoperability Analysis
 - 1. Define CONOPs
 - 2. Define mission threads, measures of effectiveness, operational nodes, conditions, and standards
 - 3. Identify interoperability gaps in mission
- 2. Technical Interoperability Analysis
 - 1. Define information exchange requirements
 - 2. Define information elements
 - 3. Define network and transport links
 - 4. Define measures of performance
- 3. Specify and Allocate Interoperability Requirements

Hold at Risk Mission

- Five constituent Systems:
 - Submarine Jaunch UUVs and C2 ٠
 - Underwater docking station recharge UUVs, comms hub ٠
 - Sensor network pre-positioned to detect underwater traffic ٠
 - UUVs to patrol choke point and detect underwater traffic ٠

system allocation to mission activities

Mission thread

Mission Thread

Partial mission model showing operational activities to complete mission

Operational Interoperability

- Coordination is the work required when two or more operational nodes complete a task vice a single operational node
- Gaps may occur because models, architectures, and designs done by separate programs for each constituent system
- Coordination work includes:
 - Communication
 - Control actions
 - Scheduling and/or sequencing of activities
- Lack of coordination is evident in task inefficiencies, quality, and effectiveness

Model	Activity	Input	Output	Description of Gap
Omega	"Send Ready	Battery	Ready Status	The Ship UUV activity requires a readiness status
υυν	Status"	Charge to		from the UUV prior to "Launch UUV" activity can
		υυν		begin.
Omega	Deploy Sensor	Sensor Data	Sensor Data	An output from deploy sensor network should be
UUV/Ship	Network/Estab	Communicat	Communicati	"Sensor Data Communications" that serves as an
υυν	lish Sensor	ion (Input	ons (Output	input to the Ship activity "Establish sensor network"
	Network	from Deploy	from Deploy	
		Sensor	Sensor	
		Network)	Network)	
Omega	"Transmit Data	None	Detection	After the Omega UUV detects a target, the Ship
υυν	to C2/Ship"		Signal/Track	must be notified so that the C2 node onboard the
			Data	ship can track the target and send data to the
				various other nodes in the SoS (i.e. the ship should
				act as the hub of operations)
Alpha	Ready for	Battery	Ready Status	The Ship requires the "Ready Status" input from the
υυν	Launch	Charge to		Alpha UUV but the UUV does not output this
	Command	υυν		information
Alpha	Send Payload	υυν	Payload GO	The Ship requires the "Payload GO Status" input
υυν	GO Status	Payload	Status	from the Alpha UUV but the UUV define any input
		Ready		or output information flows

Operational Interoperability

Mission Performance

SNR versus distance for UUVs

Probability of Detection given estimated operational availability

	Ao	P(detect)	Overall P(detect)
Both Available	0.7225	0.8	0.578
One Available	0.255	0.7	0.179
Neither Available	0.0225	0	0.000

Probability of Detection

Distance (m)	P(False Alarm)	<u>SNR</u>	P(Detect)
1000	0.10	17.50	0.88
2000	0.10	11.48	0.83
3000	0.10	7.96	0.77
4000	0.10	5.46	0.70
5000	0.10	3.52	0.60

(all values are fictional)

Interoperability Gaps

Activity	Interacting System	Input	Output	Gap		
2.1 Sensor	Ship / Large UUV	Mission Plan to Sensor	None	Sensor Network Activity HaRM.2.1 needs to		
Configuration	(Figure 4)	Network		interface with Ship/Large UUV Activity 1.1, adding		
				the trigger "mission Plan to Sensor Network" for		
				programing sensors.		
2.2 Sensor	UUV Alpha	UUV Sensor Deployed	None	Material interface for deploying sensor, Name of		
Deployment	(Figure 5)	(UUV Alpha equivalent = Nodes Placed)		interfaces differs but equates to the same activity.		
2.2 Sensor	UUV Omega	UUV Sensor Deployed	None	UUV Omega calls out an activity "O 1.7 Deploy		
Deployment	(Figure 3)			Sensor Network" and does not have an action		
				showing a material interface between the two		
				systems. Recommend adding trigger output to		
				UUV Omega activity called "UUV Sensor		
				Deployed"		
2.3 Sensor	UUV Alpha	UUV Activation Request	None	Sensor Network activity HaRM.2.3 calls for an		
Activation	(Figure 5)			activation request from the UUV. UUV Alpha has		
				no activity to directly activate the sensor network,		
				though activity 1.4 "Establish Comm Network" is		
				directed at the UDS and could conceivably include		
				a reach-through call to the sensor network		
2.3 Sensor	UUV Omega	UUV Activation Request	None	UUV Omega calls out an activity "O 1.7 Deploy		
Activation	(Figure 3)			Sensor Network" and does not have an action		
				showing an energy interface between the two		
				systems. Recommend adding trigger output to		
				UUV Omega activity called "UUV Activation		
				Request"		

Define Information Exchanges

Information and Energy Exchanges

Informational Element	Description	Source	Destination	Format	Domain
Energy_Volts	Status of system current draw	Ship/Large UUV 1.2 Establish SensorNetwork (proposed)	HaRM.2.8 Sensor Energy Store	float	[0,24]
Energy_Amp	Status of System Energy levels	Ship/Large UUV 1.2 Establish SensorNetwork (proposed)	HaRM.2.8 Sensor Energy Store	float	[0,5]
Mission_Plan.Detection.profile	Reporting sensitivity threshold	Ship/Large UUV 1.1 Prepare Mission (proposed)	HaRM.2.1 Sensor Configuration	integer	[1,100]
Mission_Plan.Loc.Position	Planned location placement of sensor	Ship/Large UUV 1.1 Prepare Mission (proposed)	HaRM.2.1 Sensor Configuration	64-bit	N/A
Mission_Plan.sn.public_key	Encryption key	Ship/Large UUV 1.1 Prepare Mission (proposed)	HaRM.2.1 Sensor Configuration	64-bit	N/A
Mission_Plan.sn.private_key	Encryption key	Ship/Large UUV 1.1 Prepare Mission (proposed)	HaRM.2.1 Sensor Configuration	64-bit	N/A
Mission_Plan.tx.power	Power setting—balancing dispersion vs. emcon vs. battery life	Ship/Large UUV 1.1 Prepare Mission (proposed)	HaRM.2.1 Sensor Configuration	float	[0,47]

Summary

- Interoperability Analysis Method to support both operational and technical interoperability for mission-oriented system-of-systems
 - Operational Interoperability -- degree of coordination of the operational activities in mission architecture
 - Technical Interoperability degree the systems can exchange materials, energy, and information as required

Summary

 The IAM works with the architecture deliverables programs already generate and identifies specific and actionable interoperability requirements in the models

 We conducted some verification and validation of the method by comparing modeling recommendations to field study experience for a separate search and rescue mission